首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
为了研究乙烯在西瓜(Citrullus lanatusThunb.Mansfeld)果实水渍化败坏过程中的作用,先将果实在5μL/L 1-甲基环丙烯(1-MCP)气体中处理18 h,然后在50 μL/L乙烯和20℃温度下贮藏.西瓜果实对乙烯处理的最初反应表现为胎座组织的电导率和游离汁液增加,同时出现组织软化和水渍化.水渍化的症状最初在靠近花萼端的内果皮中发生,在乙烯处理的第2天开始出现,ACC合成酶(ACS)和ACC氧化酶(ACO)的活性明显提高.1-MCP单独处理不产生任何明显的作用,但是会完全抑制外源乙烯诱导的水渍化败坏.没有经过乙烯处理的西瓜果实,贮藏2 d以后出现呼吸强度和乙烯释放量的高峰,10 d以后水渍化现象也零星出现.这些结果和1-MCP的预防效果说明,西瓜果实的水渍化败坏是一种由乙烯诱导的衰老现象.  相似文献   

2.
分析了与授粉有关的因子调节的ACC合酶和ACC氧化酶基因在朵丽蝶兰(DoritaenopsishybridaHort.)花中的表达。生长素和乙烯均可诱导ACC合酶和ACC氧化酶的mRNA在花器官中积累。然而,去雄却不能诱导这两个基因在花器官中表达。生长素和乙烯所诱导的ACC合酶和ACC氧化酶的mRNA在花器官中的积累模式相似。原位杂交结果表明,生长素和乙烯处理后ACC氧化酶的mRNA在柱头的表皮和薄壁细胞中积累。根据ACC合酶和ACC氧化酶基因表达的结果,对生长素、乙烯和去雄在兰花授粉后乙烯生物合成过程中的作用进行了分析。  相似文献   

3.
Pollination of flowers initiates postpollination development in orchid ( Doritaenopsis hybrida Hort. ) flowers, including perianth senescence, stigma closure, and ovary development. Because ethylene is thought to play a key role in coordinating these developmental changes, the authors studied the temporal and spatial patterns of expression of genes encoding 1-aminocyclopropane-l-carboxylic acid (ACC) synthase and ACC oxidase following pollination-associated factor treatments in orchid flowers. Both ACC synthase and ACC oxidase mRNA accumulation in the various parts of the flowers is induced by auxin, and ethylene, but not by emasculation. The patterns of both ACC synthase and ACC oxidase mRNA accumulation are similar in all floral organs following auxin and ethylene treatments. Further, in situ hybridization analysis indicates that the ACC oxidase mRNA is localized in epidermal and parenchyma cells of the stigma after auxin and ethylene treatments. The putative roles of auxin, ethylene and emasculation are discussed in terms of the regulation of ACC synthase and ACC oxidase gene expression in flowers.  相似文献   

4.
5.
Duan QH  Wang DH  Xu ZH  Bai SN 《Planta》2008,228(4):537-543
Cucumber (Cucumis sativus L.) has served as a model to understand hormone regulation in unisexual flower development since the 1950s and the role of ethylene in promoting female flower development has been well documented. Recent studies cloned the F-locus in gynoecious lines as an additional copy of the ACC synthase (ACS) gene, which further confirmed the role of ethylene in the promotion of female cucumber flowers. However, no direct evidence was generated to demonstrate that increases in endogenous ethylene production could induce female flowers by arresting stamen development. To clarify the relationship between ethylene production and stamen development, we overexpressed the ethylene synthesis cucumber gene CsACO2 to generate transgenic Arabidopsis, driven by the organ-specific promoter P AP3 . We found that organ-specific overexpression of CsACO2 significantly affected stamen but not carpel development, similar to that in the female flowers of cucumber. Our results suggested that increases in ethylene production directly disturb stamen development. Additionally, our study revealed that among all floral organs, stamens respond most sensitively to exogenous ethylene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Tang X  Gomes A  Bhatia A  Woodson WR 《The Plant cell》1994,6(9):1227-1239
The differential expression of the petunia 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene family during flower development and senescence was investigated. ACC oxidase catalyzes the conversion of ACC to ethylene. The increase in ethylene production by petunia corollas during senescence was preceded by increased ACC oxidase mRNA and enzyme activity. Treatment of flowers with ethylene led to an increase in ethylene production, ACC oxidase mRNA, and ACC oxidase activity in corollas. In contrast, leaves did not exhibit increased ethylene production or ACC oxidase expression in response to ethylene. Gene-specific probes revealed that the ACO1 gene was expressed specifically in senescing corollas and in other floral organs following exposure to ethylene. The ACO3 and ACO4 genes were specifically expressed in developing pistil tissue. In situ hybridization experiments revealed that ACC oxidase mRNAs were specifically localized to the secretory cells of the stigma and the connective tissue of the receptacle, including the nectaries. Treatment of flower buds with ethylene led to patterns of ACC oxidase gene expression spatially distinct from the patterns observed during development. The timing and tissue specificity of ACC oxidase expression during pistil development were paralleled by physiological processes associated with reproduction, including nectar secretion, accumulation of stigmatic exudate, and development of the self-incompatible response.  相似文献   

7.
Isolates of Fusarium oxysporum from Abaco, the Bahamas, whether obtained from wilted plants of cucumber (Cucumis sativus) or watermelon (Citrullus lanatus), were pathogenic to cucumber, watermelon, and cantaloupe (Cucumis melo var. reticulatus). The West Indian gherkin (Cucumis anguria), pumpkin (Cucurbita pepo), and three cultivars of summer squash (C. pepo var. melopepo) were not susceptible. Strains of F. oxysporum from wilted cucumber or watermelon plants from Florida were highly pathogenic only to their original host species and are regarded as different formae speciales.  相似文献   

8.
Sequencing analysis of one coding and four noncoding cpDNA regions was conducted to infer biogeographic and evolutionary relationships in the genus Citrullus. Eighteen taxa from diverse geographical areas were included. A low number of parsimony informative characters (1.1%) was observed at the ~4 kb section of cpDNA. Variability within Citrullus was detected primarily at noncoding regions of high A + T content. Substitution rates varied from 0-0.48% for ndhF with A + T content of 68.4% to 0.39- 1.69% for the intergenic region of atpA with A + T content of 82.8%, mainly resulting in indels and transversions. Indels at several regions acted as valuable parsimony informative markers. Citrullus lanatus var. lanatus, the cultivated watermelon, and C. ecirrhosus and C. rehmii from Namibia, lacked molecular variability. The genus Citrullus is supported monophyletically and shows two main clades, one of which contains C. colocynthis. In the other clade, C. rehmii is sister to a clade containing C. ecirrhosus and C. lanatus. Two clades were recovered within C. lanatus, consisting of domesticated watermelon and wild citron, var. citroides. Five haplotypes within C. colocynthis were used to deduce colonization routes of the species. Biogeographic patterns point to separate colonization events into Africa and the Far East.  相似文献   

9.
The application of gibberellic acid via the stem of intact preclimacteric carnation flowers inhibited the climacteric surge of ethylene evolution by the flowers. Gibberellic acid also inhibited the rate of ethylene production by all individual floral parts during both the early preclimacteric (low basal level of ethylene production) and the later climacteric stages of flower development. The extent of inhibition did however, vary from one floral part to another. The most pronounced inhibition was recorded in the petal bases between the preclimacteric and senescing stages. This suggests that the petal base is an important regulatory site for ethylene production and therefore may be involved in controlling the onset and degree of petal inrolling. In all floral parts endogenous levels of ACC were reduced with GA3 treatment, being more pronounced in the petal bases. The potential of the flowers to convert applied ACC to ethylene was not deminished by gibberellic acid.Abbreviations GA3 gibberellic acid - ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene forming enzyme  相似文献   

10.
Arrom L  Munné-Bosch S 《Planta》2012,236(2):343-354
Much effort has been focussed on better understanding the key signals that modulate floral senescence. Although ethylene is one of the most important regulators of floral senescence in several species, Lilium flowers show low sensitivity to ethylene; thus their senescence may be regulated by other hormones. In this study we have examined how (1) endogenous levels of hormones in various floral tissues (outer and inner tepals, androecium and gynoecium) vary throughout flower development, (2) endogenous levels of hormones in such tissues change in cut versus intact flowers at anthesis, and (3) spray applications of abscisic acid and pyrabactin alter flower longevity. Results show that floral tissues behave differently in their hormonal changes during flower development. Cytokinin and auxin levels mostly increased in tepals prior to anthesis and decreased later during senescence. In contrast, levels of abscisic acid increased during senescence, but only in outer tepals and the gynoecium, and during the latest stages. In addition, cut flowers at anthesis differed from intact flowers in the levels of abscisic acid and auxins in outer tepals, salicylic acid in inner tepals, cytokinins, gibberellins and jasmonic acid in the androecium, and abscisic acid and salicylic acid in the gynoecium, thus showing a clear differential response between floral tissues. Furthermore, spray applications of abscisic acid and pyrabactin in combination accelerated the latest stages of tepal senescence, yet only when flower senescence was delayed with Promalin. It is concluded that (1) floral tissues differentially respond in their endogenous variations of hormones during flower development, (2) cut flowers have drastic changes in the hormonal balance not only of outer and inner tepals but also of androecium and gynoecium, and (3) abscisic acid may accelerate the progression of tepal senescence in Lilium.  相似文献   

11.
Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity.Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.  相似文献   

12.
Although it has been reported previously that ethylene plays a critical role in sex determination in cucurbit species, how the andromonoecy that carries both the male and hermaphroditic flowers is determined in watermelon is still unknown. Here we showed that the watermelon gene 1-aminocyclopropane-1-carboxylate synthase 4(Cit ACS4), expressed specifically in carpel primordia, determines the andromonoecy in watermelon. Among four single nucleotide polymorphism(SNPs) and one InDel identified in the coding region of Cit ACS4, the C364 W mutation located in the conserved box 6 was cosegregated with andromonoecy. Enzymatic analyses showed that the C364 W mutation caused a reduced activity in Cit ACS4. We believe that the reduced Cit ACS4 activity may hamper the programmed cell death in stamen primordia, leading to the formation of hermaphroditic flowers.  相似文献   

13.
14.
Ren Y  Zhao H  Kou Q  Jiang J  Guo S  Zhang H  Hou W  Zou X  Sun H  Gong G  Levi A  Xu Y 《PloS one》2012,7(1):e29453
As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F(8) population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ~800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.  相似文献   

15.
The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200nLL(-1) ethylene for 24h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary.  相似文献   

16.
Takahashi H  Jaffe MJ 《Phyton》1984,44(1):81-86
The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.  相似文献   

17.
物种间亲缘关系的研究是杂交育种的理论基础,野生西瓜在西瓜育种中具有重要作用,然而目前对西瓜属物种间亲缘关系的研究十分有限,而且对西瓜属物种的分类问题还存在分歧.比较基因组原位杂交是分析物种间亲缘关系的有效手段,本研究以西瓜基因组DNA作探针,分别对缺须西瓜、热迷西瓜、药西瓜和诺丹西瓜有丝分裂中期染色体进行了比较基因组原位杂交分析,揭示了西瓜属物种间的亲缘关系,同时对分类地位尚存在争议的诺丹西瓜的归属问题进行了分析,发现诺丹西瓜和甜瓜之间具有非常近的亲缘关系,本研究结果为西瓜与近缘种间的远缘杂交提供了重要的理论依据.  相似文献   

18.
以朵丽蝶兰为材料,对乙烯和生长素调节的授粉后花的发育进行了研究。实验结果显示,切花和植株上的花授粉后,乙烯的产生和花的发育无明显差异;花瓣的衰老、子房发育、花粉萌发和花粉管的伸长受乙烯调节;与切花相比,植株上花的子房内无ACC合酶和ACC 氧化酶mRNA 的积累。用生长素运输抑制剂2 [(1naphthalenylamino)carbonyl] benzoicacid(NPA) 处理柱头,授粉诱导的子房发育在很大程度上受到抑制, 表明授粉后子房的发育需要转运来的生长素。  相似文献   

19.
20.
The temporal and spatial expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes were investigated in pollinated orchid (Phalaenopsis spp.) flowers. Pollination signals initiate a cascade of development events in multiple floral organs, including the induction of ethylene biosynthesis, which coordinates several postpollination developmental responses. The initiation and propagation of ethylene biosynthesis is regulated by the coordinated expression of three distinct ACC synthase genes in orchid flowers. One ACC synthase gene (Phal-ACS1) is regulated by ethylene and participates in amplification and interorgan transmission of the pollination signal, as we have previously described in a related orchid genus. Two additional ACC synthase genes (Phal-ACS2 and Phal-ACS3) are expressed primarily in the stigma and ovary of pollinated orchid flowers. Phal-ACS2 mRNA accumulated in the stigma within 1 h after pollination, whereas Phal-ACS1 mRNA was not detected until 6 h after pollination. Similar to the expression of Phal-ACS2, the Phal-ACS3 gene was expressed within 2 h after pollination in the ovary. Exogenous application of auxin, but not ACC, mimicked pollination by stimulating a rapid increase in ACC synthase activity in the stigma and ovary and inducing Phal-ACS2 and Phal-ACS3 mRNA accumulation in the stigma and ovary, respectively. These results provide the basis for an expanded model of interorgan regulation of three ACC synthase genes that respond to both primary (Phal-ACS2 and Phal-ACS3) and secondary (Phal-ACS1) pollination signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号