首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Inflorescence development in tomato plants ( Lycopersicon esculentum Mill., cv. King Plus) grown under a low-light regime is promoted by exogenous applications of a mixture of N6-benzyladenine (BA) and gibberellins A4+7 (GA) directly on the inflorescence. The photosynthetic rate of the young mature leaf, which feeds the developing inflorescence, and the proportion of 14C-assimilates exported from the source leaf are not affected by the growth substance treatment, but the pattern of 14C-assimilate distribution is altered. Assimilate supply to the treated inflorescence increases concomitantly with a decrease in the 14C import into the apical shoot, reflecting a competition between these two plant parts. The increased assimilate accumulation in the treated inflorescence is apparent 1 day after the first application of BA+GA, and precedes any morphological changes in the reproductive structure. These results are discussed in relation to nutritional hypotheses that regard assimilate supply as limiting for reproductive development.  相似文献   

2.
Abstract. The initiation of DNA synthesis and further cell cycle progression in cells during and following exposure to extremely hypoxic conditions in either G1 or G2+M has been studied in human NHIK 3025 cells. Populations of cells, synchronized by mitotic selection, were rendered extremely hypoxic (< 4 p.p.m. O2) for up to 24n h. Cell cycle progression was studied from flow cytometric DNA recordings. No accumulation of DNA was found to take place during extreme hypoxia. Cells initially in G1 at the onset of treatment did not enter S during up to 24 h exposure to extreme hypoxia, but started DNA synthesis in a highly synchronous manner within 1.5 to 2.25 h after reoxygenation. The duration of S phase was only slightly affected (increased by ≅10%) by the hypoxic treatment. This suggests that the DNA synthesizing machinery either remains intact during hypoxia or is rapidly restored after reoxygenation. Cells initially in G2 at the onset of hypoxia were able to complete mitosis, but further cell cycle progression was blocked in the subsequent G^ Following reoxygenation, these cells progressed into S phase, but the initiation of DNA synthesis was delayed for a period corresponding to at least the duration of normal G1 and did not appear in a synchronous manner. In fact, cell cycle variability was found to be increased rather than decreased as a result of exposure to hypoxia starting in G2. We interpret these findings as an indication that important steps in the preparation for initiation of DNA synthesis take place before mitosis. Furthermore, the change in cell cycle duration induced by hypoxia commencing in G1 is of a nature other than that induced by hypoxia commencing in other parts of the cell cycle.  相似文献   

3.
Abstract. We have previously found that DNA replication was affected within one cell cycle after seeding Chinese hamster ovary (CHO) cells in the presence of the polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO). We could, however, not rule out if this was due to an effect on the G1/S transition and/or on DNA synthesis elongation. In the present paper, we use a bromodeoxyuridine-flow cytometric method to more specifically study the G1/S transition, the S phase length, and the progression of cells from S phase through G2+ M and into G1, after seeding plateau phase CHO cells at low density in the absence or presence of 5 mM DFMO. We report here that DFMO-induced polyamine depletion increased the length of the S phase within one cell cycle after seeding of CHO cells in the presence of the inhibitor. No effect on the G1/S transition was observed until 2 days after seeding, suggesting that a DFMO-induced lengthening of the G1 phase occurred later than the effect on S phase progression. These results imply that the G2+ M phase was not prolonged until 2 days after seeding CHO cells in the presence of DFMO.  相似文献   

4.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

5.
Abstract. Multivariate analysis of the expression of cyclin proteins and DNA content has opened new possibilities for the study of the cell cycle. By virtue of their cell cycle phase specificity, the expression of cyclins may serve, in addition to DNA content, as another marker of a cell's position in the cycle, and provide information about the proliferative potential of cell populations. Several applications of the methodology based on bivariate analysis of DNA content v . expression of B, E and D type cyclins are reviewed: 1 expression of cyclins by individual cells during their progression through the cycle can be studied, using exponentially growing cells without the necessity of cell synchronization or other perturbations of the cycle; 2 cells having the same DNA content but residing in different phases of the cycle (e.g. G2 diploid v. G1 tetraploid) can be distinguished; 3 cell transition from G0 to G1 and progression through G1 (e.g. mitogen stimulated lymphocytes) can be assayed; 4 the population of proliferating cells can be distinguished from noncycling cells based on dual cell labelling with a G1 and G2 cyclin antibody; 5 cyclin restriction points can serve as additional cell cycle landmarks to map the point of action of antitumour drugs; 6 unscheduled expression of cyclins (e.g. the presence of cyclin B1 during G1 and S) can be detected in several tumour transformed cell lines, possibly indicating disregulation of the machmery of cell cycle progression. The last finding 6 is of special importance, because such disregulation may be of prognostic consequence in human tumours.  相似文献   

6.
Abstract. The transit times of Chinese hamster ovary cells through the phases of their cell cycle were measured using dual parameter flow cytometry to measure DNA content and the presence of monoclonal antibodies to bromodeoxyuridine. Up to four separate populations can be accurately measured: unlabelled cells in G2+ M; labelled cells that have not yet divided; labelled cells that have already divided; and the unlabelled cells that were originally in G1 plus the cells that were originally in G2+ M and have since divided. The fractions of cells in these populations can be easily followed in time and the usual kinetic properties can be estimated from these fractions, or combinations thereof, including the times through G1, S, G2+ M and the cycle time. We present equations for analysing this type of data and comment on which equations are most appropriate for measuring specific kinetic properties of the cells.  相似文献   

7.
8.
Abstract. When the mouse mammary adenocarcinoma 755 (Ca-755) reaches the plateau phase of growth, non-cycling cells with a G2-DNA content can be observed. They may belong to the diploid cell cycle but they could also be blocked in G0 or G1 of a tetraploid cycle. This hypothesis was tested in three ways: (1) non-cycling G2 nuclei were stained with a combination of Feulgen and naphthol yellow which revealed two populations, one with a low protein content and the other with a high protein content– the latter may represent nuclei ready to begin a new phase of DNA synthesis; (2) Feulgen staining and autoradiography were performed after tritiated thymidine had been administered to mice continuously: this showed that there were cells synthesizing DNA with a DNA index above 2; and (3) cells having 80 chromosomes, corresponding to the tetraploid cycle, were found almost exclusively in the plateau phase tumours.
On the other hand, the use of texture and DNA parameters of the Feulgen stained nuclei showed that they were concentrated in a diploid cycle for tumours in the exponential phase of growth and were divided between a diploid and tetraploid cycle for 'plateau' cells. Neither the cause for, nor the role played by, polyploid cells is known.  相似文献   

9.
Abstract. Tape stripping of human skin elicits a proliferative response of a synchronously-dividing group of cells. The progress of this cohort of cells has been monitored using two windows in the cell cycle, one located in mid-S phase and the other centred around G2+ M. The cellular DNA is measured with flow cytometry, the windows are defined by two ranges in the DNA histogram.
The cohort can be described as the recruitment of cells from a pre-existing G0 compartment which consists of 76% of all proliferative cells. The duration of the S phase is calculated to be 10.2 hr and G2+ M phase 5.1 hr. The cell cycle time of 39 hr for normal human keratinocytes derived from these figures is in line with recent values obtained by different techniques.  相似文献   

10.
Abstract. Cellular uptake of [3H]thymidine ([3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 × 10-18 mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10%× min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

11.
The direct effects of the nucleoside transporter inhibitor dilazep on the cell cycle of mesangial cells have not before been investigated. The purpose of this study was to elucidate whether dilazep can inhibit the proliferation of mesangial cells and how it interferes with the cell cycle of these cells. DNA histograms were used and BrdUrd uptake rate was measured by flow cytometry. There was no significant difference in the cell numbers among the untreated group and the 10−5M, 10−6M or 10−7M dilazep-treated groups at 24 h of incubation. However, at 48 and 72 h, the cell numbers in the dilazep-treated groups were significantly lower compared with that of the untreated group (P0.005). The DNA histograms of cultured rat mesangial cells at 12, 24, and 48 h of incubation with 10−5 M dilazep showed that the ratio of the S phase population in the dilazep-treated group decreased by 2.2% at 12 h, by 9.6% at 24 h, and by 18.9% at 48 h compared with the untreated group. The ratio of the G0/G1 phase population in the dilazep-treated group significantly increased: 6.8% at 12h (P 0.05), 13.9% at 24 h (P 0.001), and 76.5% at 48 h (P 0.001) compared with the untreated group. A flow cytometric measurement of bivariate DNA/BrdUrd distribution demonstrated that the DNA synthesis rate in the S phase decreased after 6 h (P 0.005) and 12 h (P 0.05) of incubation compared with the untreated group. These results suggest that dilazep inhibits the proliferation of cultured rat mesangial cells by suppressing the G1/S transition by prolonging G2/M and through decreasing the DNA synthesis rate  相似文献   

12.
The G2 block is a major response of cells to DNA damage and seem to be induced independently of p53 status. It is thought that the G2 block has a protective function and allows cells to repair their DNA. The molecular events involved in the formation of the G2 block therefore are of great interest. We have used pentoxifylline, a potent G2 delay abrogator, to study the expression of an essential component of the mitosis promoting complex (MPF), cyclin B1. Cyclin B1/G2 ratios are used to show that irradiation induces a decrease in cyclin B1 expression and that pentoxifylline restores cyclin B1 expression to control level. This confirms that suppression of cyclin B1 plays a role in the formation of the G2 cell cycle delay, and that elevating cyclin B1 expression is part of the mechanism of action of pentoxifylline on G2 blocked cells.  相似文献   

13.
Actinomycin D (0.5 μg/ml) did not prevent M stage cells from entering G1 stage, but blocked their progress from G1 to S stage. The position of the block was approximately 1.4 hr before S stage or just after the beginning of G1 stage. Actinomycin D in this concentration also significantly depressed uridine-3H uptake into G1 stage cells, but did not suppress leucine-3H uptake by M and G1 cells. This suggests that some proteins may be synthesized in M and G1 stage cells by messenger RNA left over from the previous cell cycle. However, entry of G1 cells into S stage would require synthesis of new messenger RNA near the beginning of G1 stage. Puromycin (10 μg/ml) did not prevent M cells from entering G1 stage, but blocked their progress from G1 to S stage. The site of blockage was about 0.7 hr before S stage or in the first two-third of G1 stage. This might be the site where the cells synthesize new G1 proteins necessary for entry to S stage.
Comparison of sensitivities of G1 and G2 stages to the two antibiotics reveals that the puromycin sensitivity of G1 cells was similar to that of G2 cells, but the actinomycin D sensitivity of G1 was greater than that of G2 cells.  相似文献   

14.
Abstract. Differentiation of mammalian cells is accompanied by reduced rates of proliferation and an exit from the cell cycle. Human leukemic cells HL60 present a widely used model of neoplastic cell differentiation, and acquire the monocytic phenotype when exposed to analogs of vitamin D3 (VD3). The maturation process is accompanied by two blocks in the cell cycle: an arrest in the G1/G0 phase, and a recently described G2+ M block. In this study we have analyzed the traverse of the cell cycle phases of the well-differentiating HL60-G cells exposed to one of ten analogs of VD3, and compared the cell cycle effects of each compound with its potency as a differentiation-inducing agent. We found that in general there was a good correlation between the effects of these compounds on the cell cycle and on differentiation, but the best cell cycle predictor of differentiation potency was the extent of accumulation of the cells in the G2 compartment. All analogs induced a marked decrease in the mitotic index, and polynucleation of HL60 cells was produced, especially by compounds which were effective as inducers of differentiation. Time course studies showed that induction of differentiation was accompanied by a transient increase of the proportion of cells in the G2+ M compartment, but preceded the G1 to S, and the G2 compartment blocks. These studies indicate that complex changes in the cell cycle traverse accompany, but do not precede, the acquisition of the monocytic phenotype by HL60 cells.  相似文献   

15.
The second messenger cAMP is a key regulator of growth in many cells. Previous studies showed that cAMP could reverse the growth inhibition of indoleamines in the dinoflagellate Crypthecodinium cohnii Biecheler. In the present study, we measured the level of intracellular cAMP during the cell cycle of C. cohnii . cAMP peaked during the G1 phase and decreased to a minimum during S phase. Similarly, cAMP-dependent protein kinase activities peaked at both G1 and G2+M phases of the cell cycle, decreasing to a minimum at S phase. Addition of N6, O2'-dibutyryl (Bt2)-cAMP directly stimulated the growth of C. cohnii . Flow cytometric analysis of synchronized C. cohnii cells suggested that 1 mM cAMP shortened the cell cycle, probably at the exit from mitosis. The size of Bt2-cAMP treated cells at G1 was also larger than the control cells. The present study demonstrated a regulatory role of cAMP in the cell cycle progression in dinoflagellates.  相似文献   

16.
Influence of denervation on the regeneration of Pleurodele limbs   总被引:2,自引:0,他引:2  
Abstract. A cytophotometric study of Feulgen-stained mesenchymal cell nuclei from regeneration blastemas of both innervated and denervated limbs over the 1st 7 days following the midbud stage showed a diminution of the percentage of cells in the S + G2 phases and a corresponding augmentation of the percentage of cells in the G0+ G1 phases. This change, which was temporally correlated with the redifferentiation of the innervated blastemas, was greater in denervated blastemas, even though they do not redifferentiate. From these results, it is concluded that the denervation of midbud blastemas brings about either an extension of the G1 phase or an exiting from the cell cycle to G1 (G0–1), or both phenomena.  相似文献   

17.
Abstract When cells in culture are released from G0 into cycle by diluting into fresh medium there is a delay of many hours before they re-enter the cycle and start DNA synthesis. A mouse melanoma cell line designated HP2 has been used to investigate the effects of non-standard temperatures between the time of plating and DNA synthesis. When the cells were incubated in a 5% CO2 box at 8°C for periods during the G0-G1 transition there was an extra delay before the start of S, approximately equal to the time that the cells were held at 8°C and independent of the time when the cold pulse was administered. When the cells were cooled to 25°C the delay was longer than the time for which the cells had been kept at 25°C, and this extra delay was also dependent on the point in G0-G1 when the cells were cooled, as though the cells could be reset to an earlier time by this treatment. It is suggested that a labile substance required for progression is destroyed faster than it is made at 25°C but at 8°C the rate of destruction is very low. Another phenomenon noted during these cooling experiments was that the peak height of the S phase profile, as measured by frequent pulse-thymidine incorporation experiments, was substantially higher for cells which had been cooled at a later stage in the G0-G1 transition, even though the overall times at 37°C and at the colder temperature were identical. By varying the temperature of the cold pulse it was possible to separate the change in the peak height and the delay as separate entities.  相似文献   

18.
Cytophotometric determination of single-cell DNA after repeated 3H-thymidine labelling of the JB-1 ascites tumour in the plateau phase of growth showed a massive accumulation of unlabelled cells with both G1 and G2 content. Autoradiography combined with cytophotometry or colcemid block demonstrated that some of these unlabelled cells were rapidly triggered into the cell cycle when plateau tumours were transferred to new hosts. This indicated that tumour cells may be held up in non-cycling stages corresponding to both the G1 and the G2 phase of the cell cycle.  相似文献   

19.
The duration of the mitotic cycle and of its components was analysed for each of the six successive generations of differentiating spermatogonia (A1, A2, A3, A4, intermediate and B), using radioautographed whole mounts of seminiferous tubules from testes of adult Sprague-Dawley rats. Cell cycles were determined from two successive waves of per cent labeled metaphases obtained during the period of 81 hr after a single dose of 3H-thymidine. Except for the A1 spermatogonia, all spermatogonial types (A2 to B) had similar cell cycle durations of 41-42.5 hr and comparable pre-DNA synthesis phases (G1) of 11-13 hr. Although the combined duration of DNA synthesis (S) and the post-synthesis phase (G2) remained identical for all the cell types including A1, there was a progressive lengthening of the S period at the expense of G2 during the process of spermatogonial maturation. This change was most marked during the transition from A1 to A3 spermatogonia when the S period increased from 14 hr to 21 hr, and the G2 phase shortened from 13 hr to 7.5 hr. This feature seems to be unique to germ cells and may be associated with an increasing amount of heterochromatin in the nucleus. Excluding the development of type A1 cells, the entire process of spermatogonial maturation lasted for 208 hr. Combined data on cell cycle times indicated that every 313 hr or 13 days, a new sequence of spermatogonial differentiation was initiated by the A1 cells. This was equivalent to the duration of one 'cycle' of the seminiferous epithelium as measured by other techniques.  相似文献   

20.
Plants of Poa pratensis cv. Holt initiate inflorescence primordia when exposed to short days (SD) and low temperature, but require a secondary induction by at least 4 long days (LD) for further inflorescence development and stem elongation. Single or double applications of 10 µg per plant of gibberellins A1, A3, A5 and 16,17‐dihydro A5 (DHGA5) induced inflorescence development in a high proportion of plants in SD, but only if the plants were detillered to a single stem. Exposure to 2 LD cycles did not cause heading and flowering alone but enhanced the effect of exogenous gibberellins (GAs), bringing flowering to 100%. GA5 and DHGA5 were less effective than GA1 and GA3 in SD, especially with double applications, but were more effective than GA1 and GA3 when given together with 2 LD. The GAs had differential effects on vegetative growth and flowering, GA5 and DHGA5 causing much less leaf and stem growth than the other two GAs. Marginal induction, whether by LD or GA application, resulted in a high proportion of spikelets with viviparous proliferation. Thus, whereas GAs are inhibitory to the primary induction by SD, they can replace secondary induction by LD when vegetative growth is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号