首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

2.
Abstract. Multivariate analysis of the expression of cyclin proteins and DNA content has opened new possibilities for the study of the cell cycle. By virtue of their cell cycle phase specificity, the expression of cyclins may serve, in addition to DNA content, as another marker of a cell's position in the cycle, and provide information about the proliferative potential of cell populations. Several applications of the methodology based on bivariate analysis of DNA content v . expression of B, E and D type cyclins are reviewed: 1 expression of cyclins by individual cells during their progression through the cycle can be studied, using exponentially growing cells without the necessity of cell synchronization or other perturbations of the cycle; 2 cells having the same DNA content but residing in different phases of the cycle (e.g. G2 diploid v. G1 tetraploid) can be distinguished; 3 cell transition from G0 to G1 and progression through G1 (e.g. mitogen stimulated lymphocytes) can be assayed; 4 the population of proliferating cells can be distinguished from noncycling cells based on dual cell labelling with a G1 and G2 cyclin antibody; 5 cyclin restriction points can serve as additional cell cycle landmarks to map the point of action of antitumour drugs; 6 unscheduled expression of cyclins (e.g. the presence of cyclin B1 during G1 and S) can be detected in several tumour transformed cell lines, possibly indicating disregulation of the machmery of cell cycle progression. The last finding 6 is of special importance, because such disregulation may be of prognostic consequence in human tumours.  相似文献   

3.
Abstract. We have previously found that DNA replication was affected within one cell cycle after seeding Chinese hamster ovary (CHO) cells in the presence of the polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO). We could, however, not rule out if this was due to an effect on the G1/S transition and/or on DNA synthesis elongation. In the present paper, we use a bromodeoxyuridine-flow cytometric method to more specifically study the G1/S transition, the S phase length, and the progression of cells from S phase through G2+ M and into G1, after seeding plateau phase CHO cells at low density in the absence or presence of 5 mM DFMO. We report here that DFMO-induced polyamine depletion increased the length of the S phase within one cell cycle after seeding of CHO cells in the presence of the inhibitor. No effect on the G1/S transition was observed until 2 days after seeding, suggesting that a DFMO-induced lengthening of the G1 phase occurred later than the effect on S phase progression. These results imply that the G2+ M phase was not prolonged until 2 days after seeding CHO cells in the presence of DFMO.  相似文献   

4.
The second messenger cAMP is a key regulator of growth in many cells. Previous studies showed that cAMP could reverse the growth inhibition of indoleamines in the dinoflagellate Crypthecodinium cohnii Biecheler. In the present study, we measured the level of intracellular cAMP during the cell cycle of C. cohnii . cAMP peaked during the G1 phase and decreased to a minimum during S phase. Similarly, cAMP-dependent protein kinase activities peaked at both G1 and G2+M phases of the cell cycle, decreasing to a minimum at S phase. Addition of N6, O2'-dibutyryl (Bt2)-cAMP directly stimulated the growth of C. cohnii . Flow cytometric analysis of synchronized C. cohnii cells suggested that 1 mM cAMP shortened the cell cycle, probably at the exit from mitosis. The size of Bt2-cAMP treated cells at G1 was also larger than the control cells. The present study demonstrated a regulatory role of cAMP in the cell cycle progression in dinoflagellates.  相似文献   

5.
The incorporation of tritiated thymidine into the skin has been studied after the initiation of new hair growth by plucking. Techniques are described whereby the incorporation into hair follicles and into the basal layer of the epidermis can be studied independently. Fluctuations are observed in the levels of incorporation in both cell populations through the hair growth cycle. These fluctuations show great regularity. the early fluctuations have been attributed to synchronous progression of cells through the cell division cycle. the significance of the fluctuations is discussed with particular reference to (I) possible persistence of cell cycle synchrony, (II) regulatory feedback mechanisms controlling DNA synthesis, perhaps through specific mitotic inhibitors, (III) the existence of Go, G1 and G2 cell sub-populations.  相似文献   

6.
Abstract. Chinese hamster ovary cells were arrested in the G2 phase of the cell cycle by X-irradiation. When subsequently treated with 5 mM caffeine the arrested population progressed into mitosis as a synchronous cohort where it was harvested by mitotic cell selection. This procedure provides a means to isolate cell populations treated in G2, for the investigation of G2 arrest. Comparisons were made of the number of cells retrieved from G2 arrest with the number suffering arrest, as determined by flow cytometry and by matrix algebraic simulations of irradiated cell progression. the retrieved population was not significantly less than expected for doses up to 3.5 Gy, indicating that the retrieval process does not favour the isolation of any population subset below this dose. Cell populations retrieved from arrest at varying intervals (0-3 h) after irradiation (0-3.5 Gy) showed an increase in survival with increase in interval, consistent with repair of potentially lethal damage. the repair curves (surviving fraction us time) were each described by a single exponential. G2 cells that were brought to mitosis without a period of arrest exhibited the same radiation response as cells irradiated in mitosis.  相似文献   

7.
The duration of the mitotic cycle and of its components was analysed for each of the six successive generations of differentiating spermatogonia (A1, A2, A3, A4, intermediate and B), using radioautographed whole mounts of seminiferous tubules from testes of adult Sprague-Dawley rats. Cell cycles were determined from two successive waves of per cent labeled metaphases obtained during the period of 81 hr after a single dose of 3H-thymidine. Except for the A1 spermatogonia, all spermatogonial types (A2 to B) had similar cell cycle durations of 41-42.5 hr and comparable pre-DNA synthesis phases (G1) of 11-13 hr. Although the combined duration of DNA synthesis (S) and the post-synthesis phase (G2) remained identical for all the cell types including A1, there was a progressive lengthening of the S period at the expense of G2 during the process of spermatogonial maturation. This change was most marked during the transition from A1 to A3 spermatogonia when the S period increased from 14 hr to 21 hr, and the G2 phase shortened from 13 hr to 7.5 hr. This feature seems to be unique to germ cells and may be associated with an increasing amount of heterochromatin in the nucleus. Excluding the development of type A1 cells, the entire process of spermatogonial maturation lasted for 208 hr. Combined data on cell cycle times indicated that every 313 hr or 13 days, a new sequence of spermatogonial differentiation was initiated by the A1 cells. This was equivalent to the duration of one 'cycle' of the seminiferous epithelium as measured by other techniques.  相似文献   

8.
Abstract.   Objectives : This study is to evaluate the effect of separase depletion on cell cycle progression of irradiated and non-irradiated cells through the G2/M phases and consecutive cell survival. Materials and methods : Separase was depleted with siRNA in two human non-small cell lung carcinoma (NSCLC) cell lines. Cell cycle progression, mitotic fraction, DNA repair, apoptotic and clonogenic cell death were determined. Results : By depletion of endogenous separase with siRNA in NSCLCs, we showed that separase affects progression through the G2 phase. In non-irradiated exponentially growing cells, separase depletion led to an increased G2 accumulation from 17.2% to 29.1% in H460 and from 15.7% to 30.9% in A549 cells and a decrease in mitotic cells. Depletion of separase significantly ( P <  0.01) increased the fraction of radiation-induced G2 arrested cells 30–56 h after irradiation and led to decrease in the mitotic fraction. This was associated with increased double-strand break repair as measured by γ-H2AX foci kinetics in H460 cells and to a lesser extent in A549 cells. In addition, a decrease in the expression of mitotic linked cell death after irradiation was found. Conclusions : These results indicate that separase has additional targets involved in regulation of G2 to M progression after DNA damage. Prolonged G2 phase arrest in the absence of separase has consequences on repair of damaged DNA and cell death.  相似文献   

9.
Full-grown amphibian oocytes that had been arrested at meiotic prophase I contained an activity that prevented the cell cycle from progressing beyond a G2-like stage. Injection of the contents of germinal vesicles (GV-content) or cytoplasm obtained from oocytes of the frog Rana rugosa prevented fertilized eggs of Cynops pyrrhogaster or Bufo japonicus from cleaving. The nuclei in the arrested eggs consisted of thin chromosomes and nucleolus-like particles enclosed within clear nuclear membrane and their volume increased as a function of time after injection. Cycling of maturation-promoting factor (MPF) did not occur in the injected eggs, but DNA synthesis was not disturbed. The injection of exogenous MPF into the eggs induced the reinitiation of the cell cycle with progression to the M phase and subsequent cleavage. Furthermore, the injection into the full-grown oocytes of Bufo inhibited induction of the maturation of oocytes by progesterone. These results demonstrate that a factor that arrests the cell cycle either at a G2-like stage of mitosis or at prophase in meiosis is present both in the GV and cytoplasm of frog oocytes. We refer to this factor as a G2-specific cytostatic factor (G2-CSF). G2-CSF may play an important role not only in the physiological arrest at prophase I in meiosis, but also in regulation of the G2/M transition in the cell cycle of early embryonic cells.  相似文献   

10.
Protein synthesis during photoinduced, synchronous progression of the cell cycle in single-celled protonemata of the fern Adiantum capillus-veneris was studied by tracer techniques. Nuclei of the protonemata were labelled with 3H-thymidine during spore germination so that the amount of 3H incorporated into the TCA-insoluble fraction of the cells could be used as a measure of the cell number in each sample. The rate of the incorporation of 14C-amino acids into TCA-insoluble materials was not significantly varied at different stages of the cell cycle or by treatment with blue light. Extracts of cells labelled with 35S-methionine at various times after the transfer from red light condition (G0) to darkness (G1 to S) were analyzed by two-dimensional gel electrophoresis. At least 3 of about 200 spots showed significant changes in intensity on fluorograms. Spot A (molecular weight 20,000, isoelectric point 6.3) was detectable only in early G1, whereas spot B (molecular weight 19,500, isoelectric point 6.3) was found only in the late G1 and S phases. When the cells were exposed to blue light before the dark incubation, the times of disappearance of spot A and appearance of spot B were advanced depending upon the progression of the cell cycle but not upon the clock time.  相似文献   

11.
Single-celled protonemata of the fern Adiantum capillus-veneris, kept under continuous red light, grew with a very low rate of cell division, and the cell cycle was arrested in the early G1 phase. Cell division was induced by transferring the protonemata to the dark after various light treatments, and the duration of component phases in the cell cycle was determined by a continuous-labelling technique with 3H-thymidine. Blue light irradiation greatly reduced the duration of the G1 phase but did not affect that of other phases. The greater the fluence of blue light, the shorter was the duration of G1 phase was observed. In contrast, a brief exposure of red-light-grown protonemata to far-red light given immediately before the dark incubation showed no effect on the duration of G1 S and M phases but significantly extended that of the G2 phase. The effect of far-red light on the G2 phase was reversed by red light, and the effects of red and far-red light were repeatedly reversible. The progression in the M phase was shown by means of a time-lapse video system to be not at all influenced by any pre-irradiation described above.  相似文献   

12.
13.
Abstract. The durations of the cell cycle and its component phases have been determined for the basal layer of the epidermis of the skin from the upper surface of the hind foot of the rat using single pulse [3H]-thymidine labelling and the percent labelled mitosis (PLM) technique. Rats of three age groups were used, namely 7, 14 and 52 weeks. The duration of DNA synthesis (Ts) and the G2 plus M phase (Tg2± m) were comparable in 7-week and 52-week-old rats ( P > 0–1). The major difference between 7-week and 52-week-old rats was in the duration of the G1 phase (Tg1). In 7-week-old rats Tg1 was 15.0 ± 0.8 h and in 52-week-old rats Tg1 was 31.2 ± 3.5 h. A consequence of this variation was that the overall duration of the cell cycle was longer in 52-week-old rats (53.9 ± 5.3 h) than in 7-week-old rats (30.1 ± 1.3 h).
Difficulties were found in fitting a simple curve to the PLM data for 14-week-old rats. This suggests that the proliferative cell population of the epidermis of rats of this age group may be heterogeneous. A satisfactory fit to the data was obtained using a computer model which assumed that the proliferative population of the epidermis of 14-week-old rats was a mixture of cells with cell cycle parameters the same as those of the 7-week and the 52-week-old rats. These two sub-populations of relatively slowly and rapidly proliferating cells were present in the ratio of 2:1.  相似文献   

14.
Classic stem cell theory states that the growth of heteroploid cell populations is due to the proliferation of 'main stemline'cells with modal DNA content and chromosome number. Cells with non-modal DNA content and chromosome number are thought to be blocked and/or destroyed at mitosis. To test this, we studied two chromo-somally stable cell populations (mouse bone marrow and WCHE-5 cells) and one heteroploid, chromosomally diverse cell line (MCa-11). The heteroploid MCa-11 cells showed significant [3H]dT labelling for cells with DNA contents below the modal Go/G1 peak and above the modal G2 peaks ( P <0.001). This was consistent with the presence of cells with the non-modal DNA content that were engaged in replicative DNA synthesis. A percentage labelled mitosis analysis showed that MCa-11 cells with non-modal DNA content and chromosome number were able to complete mitosis, although with prolonged pre-karyokinetic time. These results suggest that many non-modal cells present in heteroploid cell populations are capable of continued proliferation.  相似文献   

15.
The subcutaneous injection of irritating substances to baby rats results in a very reproducible wave of synchronized S phase DNA synthesis in hepatic cell involving 20% of the total population. Use has been made of this reaction to detect factors affecting DNA synthesis in hepatic cells. It enables substances to be tested during precise periods of the cell cycle. Two activities which were detected in normal adult rat serum, could not be found in the serum of the baby rat or of the partially hepatectomized adult rat: an activity inhibiting the progression of hepatocytes through the cell cycle in the late G1 phase, and an activity inducing the production of binucleate hepatocytes, effective in the late G1 and in the S phase.  相似文献   

16.
Abstract. In this report we describe the successful application of a novel microscope-based multiparameter laser scanning cytometer (LSC) to measure duration of different phases of cell cycle in HL-60 human leukaemic cell lines by the fraction of labelled mitoses (FLM) method. Exponentially growing cells were harvested after various time intervals following pulse-labelling with 5'-bromo-2'-deoxyuridine (BrdUrd), cytocentrifuged, fixed in ethanol, and then exposed to UV light to induce DNA strand breaks at the sites of incorporated BrdUrd. The 3'OH termini of the photolytically generated DNA strand breaks were labelled with BrdUTP in the reaction catalysed by exogenous terminal deoxynucleotidyl transferase (TdT), followed by FITC-labelled BrdUrd antibodies. DNA was counterstained with propidium iodide (PI). Due to differences in chromatin structure between the interphase and mitotic cells, the LSC identified the latter by virtue of their higher red (PI) fluorescence intensity values among all pixels over the measured cell. To confirm that the cells selected were indeed cells in mitosis, predominantly in metaphase, the recorded X-Y coordinates of selected cells were used to re-position the cell for their visual examination. From the time lapse analysis of percentage BrdUrd-labelled cells progressing through mitosis it was possible to calculate the duration of individual phases of the cell cycle. The duration of S (Ts) and G2+ M (TG2+M) was 8 and 3 h, respectively, and the minimal duration of G2 (TG2) was 2 h. The cell cycle time (Tc) estimated for the cohort of the most rapidly progressing cells was 13 h. The ability to automatically and rapidly discriminate mitotic cells combined with the possibility of their subsequent identification by image analysis makes LSC the instrument of choice for the FLM analysis.  相似文献   

17.
Abstract. Exposure of Farage, a human B-cell lymphoma line, to IL-4 for 3–11 days led to inhibition of tritiated thymidine ([3H]dT) uptake by the cells. Study of the incorporation of 5-bromodeoxyuridine by Farage cells showed that IL-4 reduced significantly the number of cells in the S phase of the cell cycle and increased the proportion of cells in the G1 phase. Limiting dilution analysis of proliferation demonstrated that IL-4 decreased the frequency of clone-forming cells by 40%. IL-4 did not reduce the viability of Farage cells. On the contrary, IL-4 diminished the spontaneous death of Farage cells in culture, as determined by pulse chase analysis of cells which were labelled with [3H]dT. Moreover, the pre-treatment of Farage cells with IL-4 prevented their death induced by exposure to a high dose of staurosporine. IL-4 abrogated the staurosporine-induced arrest of cells in the G2+ M phase and replaced it by accumulation of cells in the G1 phase. IL-4 protected Farage cells from the radioactive suicide caused by the uptake of [3H]dT by dividing cells. The cytokine failed to prevent the damage to Farage cells exerted by mitomycin C, which affected cellular DNA regardless of the phase of the cell cycle. The data obtained showed that IL-4 inhibited the division of B cells by arresting their progression through the early stages of the cell cycle. This inhibition of the cell efflux from G1 phase plays an important role in the protection against cell death during further stages of the cell cycle.  相似文献   

18.
Abstract. The kinetics of isthmal cells in mouse antrum were examined in three ways: (a) the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; (b) the duration of interphase and mitotic phases was determined from how frequently they occurred; and (c) mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis.
The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively.
From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr.
Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase.
We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

19.
Abstract. Cellular uptake of [3H]thymidine ([3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 × 10-18 mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10%× min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

20.
Abstract When cells in culture are released from G0 into cycle by diluting into fresh medium there is a delay of many hours before they re-enter the cycle and start DNA synthesis. A mouse melanoma cell line designated HP2 has been used to investigate the effects of non-standard temperatures between the time of plating and DNA synthesis. When the cells were incubated in a 5% CO2 box at 8°C for periods during the G0-G1 transition there was an extra delay before the start of S, approximately equal to the time that the cells were held at 8°C and independent of the time when the cold pulse was administered. When the cells were cooled to 25°C the delay was longer than the time for which the cells had been kept at 25°C, and this extra delay was also dependent on the point in G0-G1 when the cells were cooled, as though the cells could be reset to an earlier time by this treatment. It is suggested that a labile substance required for progression is destroyed faster than it is made at 25°C but at 8°C the rate of destruction is very low. Another phenomenon noted during these cooling experiments was that the peak height of the S phase profile, as measured by frequent pulse-thymidine incorporation experiments, was substantially higher for cells which had been cooled at a later stage in the G0-G1 transition, even though the overall times at 37°C and at the colder temperature were identical. By varying the temperature of the cold pulse it was possible to separate the change in the peak height and the delay as separate entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号