首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The uptake and internalization of a triglyceride emulsion by rat hepatocytes in culture less than 24 hr was either inhibited or uninfluenced by apoE. ApoE significantly increased the uptake of these emulsions in later cultures. Specific low density lipoprotein (LDL) binding was similar for hepatocyte monolayers prior to and after 24 hr. Rat hepatocytes in culture for 2 days, which were treated with collagenase, detached and then replated within 1 hr and were apoE-responsive in 2 hr. Heparin inhibited the apoE stimulation in both hepatocytes and hepatoma monolayers. Heparin wash of hepatocytes or hepatoma cells incubated with apoE-[14C]triolein emulsions at 4 degrees C resulted in a considerable loss in radiolabeled cell lipid. A similar wash after 37 degrees C incubations produced little loss suggesting internalization. Hepatocytes had lower affinity but similar apoE-emulsion binding capacity compared to hepatoma cells. Triolein emulsions with apoE were significantly more rapidly metabolized by the hepatocyte than unsupplemented emulsions. The apoE-mediated hepatocyte lipid uptake was inhibited by apoC proteins. High molar ratios of free fatty acid/albumin also suppressed hepatocyte apoE-mediated lipid uptake. Both rat high density lipoprotein (HDL) and LDL inhibited with a potency directly related to their content of apoE. Human LDL and HDL without apoE also inhibited the interaction with less potency than the rat lipoproteins. Human HDL inhibition was diminished after removal of apoC proteins.  相似文献   

2.
Arterial wall sphingomyelinase (SMase) has been proposed to be involved in atherogenesis. SMase modification of lipoproteins has been shown to occur in atherosclerotic lesions and to facilitate their uptake by macrophages and foam cell formation. To investigate the mechanism of macrophage uptake enhanced by SMase, we prepared lipid emulsions containing sphingomyelin (SM) or ceramide (CER) as model particles of lipoproteins. SMase remarkably increased the uptake of SM-containing emulsions by J774 macrophages without apolipoproteins. The emulsion uptake was negatively correlated with the degree of particle aggregation by pretreatment with SMase, whereas the uptake of CER-containing emulsions was significantly larger than SM-containing emulsions, indicating that enhancement of uptake is due to the generation of CER molecules in particles but not to the aggregation by SMase. Heparan sulfate proteoglycans (HSPGs) and low density lipoprotein receptor-related protein (LRP) were crucial for CER-enhanced emulsion uptake, because heparin or lactoferrin inhibited the emulsion uptake. Confocal microscopy also showed that SMase promoted both binding and internalization of emulsions by J774 macrophages, which were almost abolished by lactoferrin. Apolipoprotein E further increased the uptake of CER-containing emulsions compared with SM-containing emulsions. These findings suggest the generation of CER in lipoproteins by SMase facilitates the macrophage uptake via HSPG and LRP pathways and plays a crucial role in foam cell formation. Thus, CER may act as an important atherogenic molecule.  相似文献   

3.
We investigated the interaction between apolipoprotein E (apoE) and ceramide (CER)-enriched domains on the particles, by using lipid emulsions containing sphingomyelin (SM) or CER as model particles of lipoproteins. The sphingomyelinase (SMase)-induced aggregation of emulsion particles was prevented by apoE. CER increased the amount of apoE bound to emulsion particles. The confocal images of CER-containing large emulsions with two fluorescent probes showed three-dimensional microdomains enriched in CER. SMase also induced the formation of CER-enriched domains. We propose apoE prefers to bind on CER-enriched domains exposed on particle surface, and thus inhibits the aggregation or fusion of the particles.  相似文献   

4.
Chylomicron remnants have been suggested to be involved in the development of atherosclerosis. To investigate the mechanisms of chylomicron remnant-induced atherosclerosis, we prepared cholesterol (Chol)-containing emulsion particles as models for chylomicron remnants. Chol markedly increased the apolipoprotein E (apoE) binding maximum of emulsions without changing the binding affinity and thereby promoted emulsion uptake by J774 macrophages. Fluorescence measurements showed that Chol increased acyl chain order and head group hydration of the surface phospholipid (PL) layer of emulsions. The binding maximum of apoE was closely correlated with the hydration and the increase in the PL head group separation at the emulsion surface. From experiments using inhibitors for lipoprotein receptors, heparan sulfate proteoglycans and low density lipoprotein receptor-related protein were found to be the major contributors to the uptake of Chol-containing emulsions. Trypan blue dye exclusion revealed that the uptake of Chol-containing emulsions induced cytotoxicity to J774 macrophages. This study proposes a mechanism of atherosclerosis induced by chylomicron remnants.  相似文献   

5.
Omega-3-rich (n-3) triglycerides (TG) are increasingly recognized as having modulating roles in many physiological and pathological conditions. We questioned whether the catabolism of lipid emulsions would be changed after enrichment with fish oil (n-3) TG as compared to enrichment with omega-6-rich soy oil (n-6) TG. Phospholipid-stabilized emulsions of n-3 TG and n-6 TG were labeled with [(3)H]cholesteryl oleoyl ether and administered by bolus injection to wild-type (WT) mice, mice lacking the low-density lipoprotein receptor (LDL-R) (LDL-R -/-), and apolipoprotein E (apoE) knockout mice (apoE -/-). The effects of exogenous apoE, heparin, Triton WR 1339, and lactoferrin on catabolism of emulsions were also assayed. n-3 TG emulsions were cleared faster from blood and had different extrahepatic tissue targeting compared to n-6 TG emulsions. In apoE -/- and LDL-R -/- mice, blood clearance of n-6 TG emulsions slowed with decreased liver uptake, but no changes were observed in n-3 TG emulsion clearance and tissue uptake compared to WT mice. In WT mice, addition of exogenous apoE to the emulsion increased liver uptake of n-6 TG emulsions but had no impact on n-3 TG emulsions. Pre-injection of heparin increased and Triton WR 1339 and lactoferrin decreased blood clearance of n-6 TG emulsions with little or no effect on n-3 TG emulsions. Liver uptake of n-6 TG emulsions increased after heparin injection and decreased after Triton WR 1339 injection, but uptake of n-3 TG emulsions was not changed. These data show that the catabolism of n-3 TG emulsions and the catabolism of n-6 TG emulsions occur via very different mechanisms. Removal of chylomicron-sized n-6 TG emulsions is modulated by lipoprotein lipase (LPL), apoE, LDL-R, and lactoferrin-sensitive pathways. In contrast, clearance of chylomicron-sized n-3 TG emulsions relies on LPL to a very minor extent and is independent of apoE, LDL-R, and lactoferrin-sensitive pathways.  相似文献   

6.
We have recently shown that sphingomyelin (SM) strongly inhibits lipoprotein lipase (LPL)-mediated lipolysis in monolayers and emulsion particles. To further evaluate how SM modulates LPL activity on the emulsion surface, the relationship between membrane surface structure and LPL activity was investigated. We measured fluorescence anisotropy of 1-palmitoyl-2-[3-(diphenylhexatrienyl)propionyl]-sn-3-phosphati dylcho line, probing surface acyl chain fluidity, and fluorescence lifetime of N-(5-dimethylaminonaphthalene-1-sulfonyl)dipalmitoylphosphatidylethan olamine in H(2)O and D(2)O buffer, assessing the degree of hydration in the head group region. The results revealed that incorporation of egg SM into triolein-egg phosphatidylcholine emulsions markedly increased acyl chain order and decreased head group hydration of the surface monolayers. In contrast, cholesterol was shown to increase head group hydration despite a strong increase in acyl chain order. The close correlation between the apparent K(m) values of LPL and the degree of head group hydration indicated that LPL interacts with the head group region rather than with the hydrophobic interior of the surface monolayers. However, apparent V(max) did not show a simple correlation with any surface structure, and the finding in which SM had no effect on apparent V(max) of medium-chain triglyceride emulsions suggested that the hydrophobic interaction between acyl chains of SM and triglyceride at the emulsion surface is important for determining the apparent V(max). These results showed conclusively that SM inhibits LPL activity mainly by changing the emulsion surface structure and not by a specific interaction between SM and LPL.  相似文献   

7.
Large (ca. 120 nm) and small (ca. 35 nm) emulsions consisting of triolein (TO) and phosphatidylcholine (PC) were prepared as the primary protein-free models of chylomicrons and their remnants, respectively. Lipoprotein lipase (LPL)-mediated lipolysis of emulsion TO was retarded in chylomicron-free human plasma compared with the hydrolysis activated by isolated apolipoprotein C-II (apoC-II). In 30% plasma, free fatty acid (FFA) release rate was higher for large emulsions than for small ones, while both emulsions were hydrolyzed at similar rates in the presence of isolated apoC-II. Isolated apolipoprotein C-III (apoC-III) or apolipoprotein E (apoE) worked as LPL-inhibitor of the lipolysis activated by apoC-II. It was also observed that apolipoprotein A-I (apoA-I) showed distinct inhibitory effects on the lipolysis of large and small emulsions: more effective inhibition for small emulsions. Kinetic analyses showed that K(m)(app) and V(max)(app) for the lipolysis of emulsions were lower in the presence of 30% plasma than isolated apoC-II. ApoA-I also markedly decreased K(m)(app) and V(max)(app) for LPL-catalyzed hydrolysis of both emulsions. In chylomicron-free serum, the density of bound apoA-I at small emulsion surfaces was about three fold greater than large emulsion surfaces, but the binding densities of apoC-II, apoC-III and apoE were less for small emulsion surfaces than for large ones, suggesting that apoA-I preferentially binds to small particles and displaces other exchangeable apolipoproteins from particle surfaces. These results indicate that, in addition to the well known inhibitory effects of apoC-III and apoE, apoA-I in plasma regulates the lipolysis of triglyceride (TG)-rich emulsions and lipoproteins in a size-dependent manner.  相似文献   

8.
In order to investigate the effect of cholesteryl ester (CE) accumulation in plasma lipoprotein on its metabolism, change of the cholesterol (CHOL) microenvironment was studied by using a lipid microemulsion model system (J. Biol. Chem. 258, 10073-10082, 1983 and 260, 16375-16382, 1985) in the presence of CE and apolipoproteins. Solubility of CHOL in the triolein (TG) core of the emulsion was limited (0.4 weight percent), so that most of the CHOL in the emulsion was found to be associated with the phosphatidylcholine (PC) surface membrane. CE was associated almost exclusively with the TG core without any significant effect on the partitioning of cholesterol between the core and the surface. However, membrane-associated CHOL seems to be present in the TG core adjacent to the surface membrane in the microemulsion without CE, and it is likely to be shifted into the membrane by the presence of CE in the core according to the compositional analysis. Binding parameters of apolipoproteins (apo) A-I, A-II, C-III1, and E were not significantly different among the emulsions with and without CHOL and/or CE at CHOL/PC ratios up to 0.17 (w/w). Susceptibility of CHOL to cholesterol oxidase was observed as an enzymatic probe for CHOL microenvironment. In the absence of apolipoproteins, CHOL reacted similarly to the enzyme regardless of its shift by CE. When apolipoproteins bound to the emulsion containing only CHOL, the rate of CHOL oxidation was decreased by 40% with apoE but not with the others.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Apolipoproteins (apo) C-I and C-III are known to inhibit lipoprotein lipase (LPL) activity, but the molecular mechanisms for this remain obscure. We present evidence that either apoC-I or apoC-III, when bound to triglyceride-rich lipoproteins, prevent binding of LPL to the lipid/water interface. This results in decreased lipolytic activity of the enzyme. Site-directed mutagenesis revealed that hydrophobic amino acid residues centrally located in the apoC-III molecule are critical for attachment to lipid emulsion particles and consequently inhibition of LPL activity. Triglyceride-rich lipoproteins stabilize LPL and protect the enzyme from inactivating factors such as angiopoietin-like protein 4 (angptl4). The addition of either apoC-I or apoC-III to triglyceride-rich particles severely diminished their protective effect on LPL and rendered the enzyme more susceptible to inactivation by angptl4. These observations were seen using chylomicrons as well as the synthetic lipid emulsion Intralipid. In the presence of the LPL activator protein apoC-II, more of apoC-I or apoC-III was needed for displacement of LPL from the lipid/water interface. In conclusion, we show that apoC-I and apoC-III inhibit lipolysis by displacing LPL from lipid emulsion particles. We also propose a role for these apolipoproteins in the irreversible inactivation of LPL by factors such as angptl4.  相似文献   

10.
Molecular interactions between apoE and ABCA1: impact on apoE lipidation   总被引:3,自引:0,他引:3  
Apolipoprotein E (apoE)/ABCA1 interactions were investigated in human intact fibroblasts induced with 22(R)-hydroxycholesterol and 9-cis-retinoic acid (stimulated cells). Here, we show that purified human plasma apoE3 forms a complex with ABCA1 in normal fibroblasts. Lipid-free apoE3 inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than reconstituted HDL particles (IC(50) = 2.5 +/- 0.4 microg/ml vs. 12.3 +/- 1.3 microg/ml). ApoE isoforms showed similar binding for ABCA1 and exhibited identical kinetics in their abilities to induce ABCA1-dependent cholesterol efflux. Mutation of ABCA1 associated with Tangier disease (C1477R) abolished both apoE3 binding and apoE3-mediated cholesterol efflux. Analysis of apoE3-containing particles generated during the incubation of lipid-free apoE3 with stimulated normal cells showed nascent apoE3/cholesterol/phospholipid complexes that exhibited prebeta-electrophoretic mobility with a particle size ranging from 9 to 15 nm, whereas lipid-free apoE3 incubated with ABCA1 mutant (C1477R) cells was unable to form such particles. These results demonstrate that 1). apoE association with lipids reduced its ability to interact with ABCA1; 2). apoE isoforms did not affect apoE binding to ABCA1; 3). apoE-mediated ABCA1-dependent cholesterol efflux was not affected by apoE isoforms in fibroblasts; and 4). the lipid translocase activity of ABCA1 generates apoE-containing high density-sized lipoprotein particles. Thus, ABCA1 is essential for the biogenesis of high density-sized lipoprotein containing only apoE particles in vivo.  相似文献   

11.
Previous studies with hypertriglyceridemic APOC3 transgenic mice have suggested that apolipoprotein C-III (apoC-III) may inhibit either the apoE-mediated hepatic uptake of TG-rich lipoproteins and/or the lipoprotein lipase (LPL)-mediated hydrolysis of TG. Accordingly, apoC3 knockout (apoC3(-/-)) mice are hypotriglyceridemic. In the present study, we attempted to elucidate the mechanism(s) underlying these phenomena by intercrossing apoC3(-/-) mice with apoE(-/-) mice to study the effects of apoC-III deficiency against a hyperlipidemic background. Similar to apoE(+/+) apoC3(-/-) mice, apoE(-/-)apoC3(-/-) mice exhibited a marked reduction in VLDL cholesterol and TG, indicating that the mechanism(s) by which apoC-III deficiency exerts its lipid-lowering effect act independent of apoE. On both backgrounds, apoC3(-/-) mice showed normal intestinal lipid absorption and hepatic VLDL TG secretion. However, turnover studies showed that TG-labeled emulsion particles were cleared much more rapidly in apoC3(-/-) mice, whereas the clearance of VLDL apoB, as a marker for whole particle uptake by the liver, was not affected. Furthermore, it was shown that cholesteryl oleate-labeled particles were also cleared faster in apoC3(-/-) mice. Thus the mechanisms underlying the hypolipidemia in apoC3(-/-) mice involve both a more efficient hydrolysis of VLDL TG as well as an enhanced selective clearance of VLDL cholesteryl esters from plasma. In summary, our studies of apoC3(-/-) mice support the concept that apoC-III is an effective inhibitor of VLDL TG hydrolysis and reveal a potential regulating role for apoC-III with respect to the selective uptake of cholesteryl esters.  相似文献   

12.
ApoE exists as three common isoforms, apoE2, apoE3, and apoE4; apoE2 and apoE3 preferentially bind to high density lipoproteins, whereas apoE4 prefers very low density lipoproteins (VLDL). To understand the molecular basis for the different lipoprotein distributions of these isoforms in human plasma, we examined the lipid-binding properties of the apoE isoforms and some mutants using lipid emulsions. With both large (120 nm) and small (35 nm) emulsion particles, the binding affinity of apoE4 was much higher than that of apoE2 and apoE3, whereas the maximal binding capacities were similar among the three isoforms. The 22-kDa N-terminal fragment of apoE4 displayed a much higher binding capacity than did apoE2 and apoE3. The apoE4(E255A) mutant, which has no electrostatic interaction between Arg61 and Glu255, showed binding behavior similar to that of apoE3, indicating that N- and C-terminal domain interaction in apoE4 is responsible for its high affinity for lipid. In addition, the apoE3(P267A) mutant, which is postulated to contain a long alpha-helix in the C-terminal domain, had significantly decreased binding capacities for both sizes of emulsion particle, suggesting that the apoE4 preference for VLDL is not due to a stabilized long alpha-helical structure. Isothermal titration calorimetry measurements showed that there is no significant difference in thermodynamic parameters for emulsion binding among the apoE isoforms. However, fluorescence measurements of 8-anilino-1-naphthalenesulfonic acid binding to apoE indicated that apoE4 has more exposed hydrophobic surface compared with apoE3 mainly due to the different tertiary organization of the C-terminal domain. The less organized structure in the C-terminal domain of apoE4 leads to the higher affinity for lipid, contributing to its preferential association with VLDL. In fact, we found that apoE4 binds to VLDL with higher affinity compared with apoE3.  相似文献   

13.
Apolipoprotein E (apoE) plays a critical role in plasma lipid homeostasis through its function as a ligand for the low-density lipoprotein (LDL) receptor family. Receptor recognition is mediated by residues 130-150 in the independently folded, 22-kDa N-terminal (NT) domain. This elongated globular four-helix bundle undergoes a conformational change upon interaction with an appropriate lipid surface. Unlike other apolipoproteins, apoE3 NT failed to fully protect human LDL from aggregation induced by treatment with phospholipase C. Likewise, in dimyristoylglycerophosphocholine (Myr2Gro-PCho) vesicle transformation assays, 100 microg apoE3 NT induced only 15% reduction in vesicle (250 microg) light scattering intensity after 30 min. ApoE3 NT interaction with modified lipoprotein particles or Myr2Gro-PCho vesicles was concentration-dependent whereas the vesicle transformation reaction was unaffected by buffer ionic strength. In studies with the anionic phospholipid dimyristoylglycerophosphoglycerol, apoE3 NT-mediated vesicle transformation rates were enhanced > 10-fold compared with Myr2Gro-PCho and activity decreased with increasing buffer ionic strength. Solution pH had a dramatic effect on the kinetics of apoE3 NT-mediated Myr2Gro-PCho vesicle transformation with increased rates observed as a function of decreasing pH. Fluorescence studies with a single tryptophan containing apoE3 NT mutant (L155W) revealed increased solvent exposure of the protein interior at pH values below 4.0. Similarly, fluorescent dye binding experiments with 8-anilino-1-naphthalene sulfonate revealed increased exposure of apoE3 NT hydrophobic interior as a function of decreasing pH. These studies indicate that apoE3 NT lipid binding activity is modulated by lipid surface properties and protein tertiary structure.  相似文献   

14.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. We compared binding and degradation of normal and apoE-depleted human VLDL and apoE knockout mouse VLDL in human foreskin fibroblasts. Surface binding at 37 degrees C of apoE knockout VLDL was greater than that of normal VLDL by 3- and 40-fold, respectively, in the presence of LPL and HTGL. In spite of the greater stimulation of surface binding, lipase-stimulated degradation of apoE knockout mouse VLDL was significantly lower than that of normal VLDL (30, 30, and 80%, respectively, for control, LPL, and HTGL treatments). In the presence of LPL and HTGL, surface binding of apoE-depleted human VLDL was, respectively, 40 and 200% of normal VLDL whereas degradation was, respectively, 25 and 50% of normal VLDL. LPL and HTGL stimulated degradation of normal VLDL in a dose-dependent manner and by a LDL receptor-mediated pathway. Maximum stimulation (4-fold) was seen in the presence LPL (1 microgram/ml) or HTGL (3 microgram/ml) in lovastatin-treated cells. On the other hand, degradation of apoE-depleted VLDL was not significantly increased by the presence of lipases even in lovastatin-treated cells. Surface binding of apoE-depleted VLDL to metabolically inactive cells at 4 degrees C was higher in control and HTGL-treated cells, but unchanged in the presence of LPL. Degradation of prebound apoE-depleted VLDL was only 35% as efficient as that of normal VLDL. Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation.Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.  相似文献   

15.
To identify the substrate specificity and regulatory factors in lipoprotein lipase (LPL) catalyzed hydrolysis of triacylglycerol-rich lipoprotein, monoacid-rich lipoproteins were used to study the kinetic parameters of LPL. Feeding growing rats with diets rich in palmitic acid (16:0), oleic acid (18:1) or linoleic acid (18:2) for 10 days increased the corresponding acid content in the triacylglycerols of the lipoproteins. Force-feeding the monoacid-rich triacylglycerols, particularly 16:0 or 18:1, increased the respective fatty acid content in both chylomicrons and VLDLs. Major apolipoproteins and lipid compositions were essentially similar among all lipoproteins differing in monoacid species, except for apo A-IV. The Vmax of LPL for 16:0-rich chylomicrons and VLDLs were higher than for 18:1- or 18:2-rich lipoproteins. Order parameter (S), an indicator of the surface fluidity of lipoproteins, decreased with the chain length and unsaturation of monoacid in similar manner as the Vmax. The Vmax of LPL increased linearly (P < 0.05) with an increase in either the palmitic acid content of the lipoprotein triacylglycerols or order parameter (S) of the lipoproteins. The order parameter (S) and Vmax of LPL were higher in 16:0 triacylglycerol emulsions with apo B than with 18:1 or 18:2 triacylglycerols. The apo A-IV in triacylglycerol emulsions stimulated Vmax of LPLs in the presence of apo B and apo C-II. The binding of apo A-IV to 16:0 triacylglycerol emulsions was higher than to other triacylglycerol emulsions. These findings suggest that lipoprotein catalysis by LPL is modulated by the 16:0 level in the lipoprotein triacylglycerol, which affects the surface fluidity and apo A-IV content of lipoproteins.  相似文献   

16.
Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.  相似文献   

17.
Human apolipoprotein (apo) E4 binds preferentially to very low-density lipoproteins (VLDLs), whereas apoE3 binds preferentially to high-density lipoproteins (HDLs), resulting in different plasma cholesterol levels for the two isoforms. To understand the molecular basis for this effect, we engineered the isolated apoE N-terminal domain (residues 1-191) and C-terminal domain (residues 192-299) together with a series of variants containing deletions in the C-terminal domain and assessed their lipid and lipoprotein binding properties. Both isoforms can bind to a phospholipid (PL)-stabilized triolein emulsion, and residues 261-299 are primarily responsible for this activity. ApoE4 exhibits better lipid binding ability than apoE3 as a consequence of a rearrangement involving the segment spanning residues 261-272 in the C-terminal domain. The strong lipid binding ability of apoE4 coupled with the VLDL particle surface being ~60% PL-covered is the basis for its preference for binding VLDL rather than HDL. ApoE4 binds much more strongly than apoE3 to VLDL but less strongly than apoE3 to HDL(3), consistent with apoE-lipid interactions being relatively unimportant for binding to HDL. The preference of apoE3 for binding to HDL(3) arises because binding is mediated primarily by interaction of the N-terminal helix bundle domain with the resident apolipoproteins that cover ~80% of the HDL(3) particle surface. Thus, the selectivity in the binding of apoE3 and apoE4 to HDL(3) and VLDL is dependent upon two factors: (1) the stronger lipid binding ability of apoE4 relative to that of apoE3 and (2) the differences in the nature of the surfaces of VLDL and HDL(3) particles, with the former being largely covered with PL and the latter with protein.  相似文献   

18.
Gorshkova IN  Atkinson D 《Biochemistry》2011,50(12):2040-2047
Hypertriglyceridemia (HTG) is a common lipid abnormality in humans. However, its etiology remains largely unknown. It was shown that severe HTG can be induced in mice by overexpression of wild-type (WT) apolipoprotein E (apoE) or specific apoA-I mutants. Certain mutations in apoE4 were found to affect plasma triglyceride (TG) levels in mice overexpressing the protein. HTG appeared to positively correlate with the ability of the apoE4 variants to bind to TG-rich particles, protein destabilization, and the exposure of protein hydrophobic surface in solution. Here, we propose that the apoA-I mutations that cause HTG may also lead to changes in the conformation and stability that promote binding of apoA-I to TG-rich lipoproteins. To test this hypothesis, we studied binding to TG-rich emulsion and biophysical properties of the apoA-I mutants that induce HTG, apoA-I[E110A/E111A] and apoA-I[Δ(61-78)], and compared them to those of WT apoA-I and another apoA-I mutant, apoA-I[Δ(89-99)], that does not induce HTG but causes hypercholesterolemia in mice. We found that the apoA-I[E110A/E111A] and apoA-I[Δ(61-78)] mutations lead to enhanced binding of apoA-I to TG-rich particles, destabilization, and greater exposure of the hydrophobic surface of the protein. The apoA-I[Δ(89-99)] mutant did not show enhanced binding to the emulsion or a more exposed hydrophobic surface. Thus, like apoE4, the apoA-I variants that cause HTG in mice have the altered conformation and stability that facilitate their binding to TG-rich lipoproteins and thereby may lead to the reduced level of lipolysis of these lipoproteins. While many factors may be involved in induction of HTG, we suggest that an increased level of association of destabilized loosely folded apolipoproteins with TG-rich lipoproteins may contribute to some cases of HTG in humans.  相似文献   

19.
Apolipoprotein E (apoE) is an important determinant for the uptake of triglyceride-rich lipoproteins and emulsions by the liver, but the intracellular pathway of apoE following particle internalization is poorly defined. In the present study, we investigated whether retroendocytosis is a unique feature of apoE as compared with apoB by studying the intracellular fate of very low density lipoprotein-sized apoE-containing triglyceride-rich emulsion particles and LDL after LDLr-mediated uptake. Incubation of HepG2 cells with [(3)H]cholesteryl oleate-labeled particles at 37 degrees C led to a rapid release of [(3)H]cholesterol within 30 min for both LDL and emulsion particles. In contrast, emulsion-derived (125)I-apoE was more resistant to degradation (>/=120 min) than LDL-derived (125)I-apoB (30 min). Incubation at 18 degrees C, which allows endosomal uptake but prevents lysosomal degradation, with subsequent incubation at 37 degrees C resulted in a time-dependent release of intact apoE from the cells (up to 14% of the endocytosed apoE at 4 h). The release of apoE was accelerated by the presence of protein-free emulsion (20%) or high density lipoprotein (26%). Retroendocytosis of intact particles could be excluded since little intact [(3)H]cholesteryl oleate was released (<3%). In contrast, the degradation of LDL was complete with virtually no secretion of intact apoB into the medium. The intracellular stability of apoE was also demonstrated after hepatic uptake in C57Bl/6 mice. Intravenous injection of (125)I-apoE and [(3)H]cholesteryl oleate-labeled emulsions resulted in efficient LDLr-mediated uptake of both components by the liver (45-50% of the injected dose after 20 min). At 1 h after injection, only 15-20% of the hepatic (125)I-apoE was degraded, whereas 75% of the [(3)H]cholesteryl oleate was hydrolyzed. From these data we conclude that following LDLr-mediated internalization by liver cells, apoE can escape degradation and can be resecreted. This sequence of events may allow apoE to participate in its hypothesized intracellular functions such as mediator of the post-lysosomal trafficking of lipids and very low density lipoprotein assembly.  相似文献   

20.
Lipoprotein kinetic studies have demonstrated that a large proportion of Sf 60-400 very low density lipoprotein (VLDL) is cleared directly from the circulation in Type IV hypertriglyceridemic subjects, at an unknown tissue site. The present studies were designed to investigate the role of hepatocytes in this process and to define the conditions, whereby Type IV Sf 60-400 VLDL would induce lipid accumulation in HepG2 cells. Type IV VLDL (Sf 60-400) failed to augment the total cholesterol, esterified cholesterol, or triglyceride content of HepG2 cells following 24-h incubations. Coincubation of bovine milk lipoprotein lipase (LPL) and Type IV VLDL with HepG2 cells induced a 3-fold increment in cellular esterified cholesterol mass (p less than 0.005) and a 7-fold increase in cellular triglyceride mass (p less than 0.005), compared to VLDL alone. The increased cellular lipid mass was associated with increased oleate incorporation into cellular cholesterol esters and triglycerides. Exogenous LPL hydrolyzed 76% of the VLDL triglyceride over 24 h. LPL action on Type IV VLDL was sufficient to promote cellular uptake of these lipoproteins, while elevated media-free fatty acid levels were not. Although HepG2 cells secrete apolipoprotein (apo) E, we assessed the role of VLDL-associated apoE in the lipid accumulation induced by VLDL plus LPL. ApoE-rich and apoE-poor Type IV VLDL subfractions induced similar increments in cellular esterified cholesterol in the presence of LPL, despite a 4-fold difference in apoE content. Sf 60-400 VLDL, from subjects homozygous for the defective apoE2, plus LPL, behaved identically to Type IV VLDL plus LPL. Type IV VLDL plus LPL, preincubated with anti-apoE (1D7) and apoB (5E11) monoclonal antibodies, known to block the binding of apoE and -B, respectively, to the LDL receptor failed to block lipid accumulation. In contrast, apoE-poor Type IV VLDL, apoE2 VLDL, and VLDL plus 1D7 were taken up poorly by J774 cells, cells that secrete LPL, but not apoE. These studies suggest that lipolytic remodeling of large Type IV VLDL by LPL is a prerequisite for their uptake by HepG2 cells and that HepG2 cell-secreted apoE rather than VLDL-associated apoE is the ligand involved in uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号