首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Zhou K  Zhang X  Zhang F  Li Z 《Microbial ecology》2011,62(3):644-654
Compared with sponge-associated bacteria, the phylogenetic diversity of fungi in sponge and the association of sponge fungi remain largely unknown. Meanwhile, no detection of polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) genes in sponge-associated fungi has been attempted. In this study, diverse and novel cultivable fungi including 10 genera (Aspergillus, Ascomycete, Fusarium, Isaria, Penicillium, Plectosphaerella, Pseudonectria, Simplicillium, Trichoderma, and Volutella) in four orders (Eurotiales, Hypocreales, Microascales, and Phyllachorales) of phylum Ascomycota were isolated from 10 species marine sponges in the South China Sea. Eurotiales and Hypocreales fungi were suggested as sponge generalists. The predominant isolates were Penicillium and Aspergillus in Eurotiales followed by Volutella in Hypocreales. Based on the conserved Beta-ketosynthase of PKS and A domain of NRPS, 15 polyketide synthases, and four non-ribosomal peptides synthesis genes, including non-reducing and reducing PKSs and hybrid PKS–NRPS, were detected in these fungal isolates. A lateral gene transfer event was indicated in the comparison between the phylogenetic diversity of 18S rRNA genes and β-ketoacyl synthase domain sequences. Some fungi, especially those with PKS or NRPS genes, showed antimicrobial activity against P. fluorescens, S. aureus and B. subtilis. It was the first time to investigate PKS and NRPS genes in sponge-associated fungi. Based on the detected antibiotics biosynthesis-related PKS and NRPS genes and antimicrobial activity, the potential ecological role of sponge-associated fungi in the chemical defense for sponge host was suggested. This study extended our knowledge of sponge-associated fungal phylogenetic diversity and their potential roles in the chemical defense.  相似文献   

2.
Li CQ  Liu WC  Zhu P  Yang JL  Cheng KD 《Microbial ecology》2011,62(4):800-812
Several molecular techniques were employed to document the bacterial diversity associated with the marine sponge Gelliodes carnosa. Cultivation-dependent and cultivation-independent methods were used to obtain the 16S rRNA gene sequences of the bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the bacterial community structure was highly diverse with representatives of the high G + C Gram-positive bacteria, cyanobacteria, low G + C Gram-positive bacteria, and proteobacteria (α-, β-, and γ-), most of which were also found in other marine environments, including in association with other sponges. Overall, 300 bacterial isolates were cultivated, and a total of 62 operational taxonomic units (OTUs) were identified from these isolates by restriction fragment length polymorphism (RFLP) analysis and DNA sequencing of the 16S rRNA genes. Approximately 1,000 16S rRNA gene clones were obtained by the cultivation-independent method. A total of 310 clones were randomly selected for RFLP analysis, from which 33 OTUs were acquired by further DNA sequencing and chimera checking. A total of 12 cultured OTUs (19.4% of the total cultured OTUs) and 13 uncultured OTUs (39.4% of the total uncultured OTUs) had low sequence identity (≤97%) with their closest matches in GenBank and were probably new species. Our data provide strong evidence for the presence of a diverse variety of unidentified bacteria in the marine sponge G. carnosa. A relatively high proportion of the isolates exhibited antimicrobial activity, and the deferred antagonism assay showed that over half of the active isolates exhibited a much stronger bioactivity when grown on medium containing seawater. In addition to demonstrating that the sponge-associated bacteria could be a rich source of new biologically active natural products, the results may have ecological implications. This study expands our knowledge of the diversity of sponge-associated bacteria and contributes to the growing database of the bacterial communities within sponges.  相似文献   

3.
Systematics can provide a fundamental framework for understanding the relationships and diversification of organisms. Multilocus sequence analysis (MLSA) has shown great promise for an elaborate taxonomic grouping of streptomycete diversity. To evaluate the practical significance of MLSA as a valuable systematic tool for streptomycetes, we examined six endophytic Streptomyces griseus isolates and two S. griseus reference strains possessing obvious antagonistic activities and identical 16S rRNA gene sequences, using both housekeeping genes and secondary metabolic genes. All the eight strains contained PKS-I and NRPS genes, but not PKS-II genes, and showed similar diversity in both the MLSA phylogeny based on five housekeeping genes (atpD, gyrB, recA, rpoB and trpB) and fingerprinting of KS-AT genes. We also inferred a phylogeny based on concatenated amino acid sequences of representative KS-AT genes from the strains, which displayed a topology correlated well with those of housekeeping-gene MLSA and KS-AT fingerprinting. The good congruence observed between phylogenies based on the different datasets verified that the MLSA scheme provided robust resolution at intraspecific level and could predict the overall diversity of secondary metabolic potential within a Streptomyces species, despite somewhat of a discrepancy with antimicrobial data. It is therefore feasible to apply MLSA to dissecting natural diversity of streptomycetes for a better understanding of their evolution and ecology, as well as for facilitating their bioprospecting.  相似文献   

4.
The modular polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) have been found to be involved in natural product synthesis in many microorganisms. Study on their diversities in natural environment may provide important ecological insights, in addition to opportunities for antibacterial drugs development. In this study, the PKS and NRPS gene diversities in two coast sediments near China Zhongshan Station were studied. The phylogenetic analysis of amino acid (AA) sequences indicated that the identified ketosynthase (KS) domains were clustered with those from diverse bacterial groups, including Proteobacteria, Firmicutes, Planctomycetes, Cyanobacteria, Actinobacteria, and some uncultured symbiotic bacteria. One new branch belonging to hybrid PKS/NRPS enzyme complexes and five independent clades were found on the phylogenetic tree. The obtained adenylation (A) domains were mainly clustered within the Cyanobacteria and Proteobacteria group. Most of the identified KS and A domains showed below 80 and 60% identities at the AA level to their closest matches in GenBank, respectively. The diversities of both KS and A domains in natural environmental sample were different from those in sewage-contaminated sample. These results revealed the great diversity and novelty of both PKS and NRPS genes in Antarctic sediment.  相似文献   

5.
Bacterial lipopeptides (LPs) are a diverse group of secondary metabolites synthesized through one or more non-ribosomal peptide synthetases (NRPSs). In certain genera, such as Pseudomonas and Bacillus, these enzyme systems are often involved in synthesizing biosurfactants or antimicrobial compounds. Several different types of LPs have been reported for non-pathogenic plant-associated Pseudomonas. Focusing on this group of bacteria, we devised and validated a PCR method to detect novel LP-synthesizing NRPS genes by targeting their lipoinitiation and tandem thioesterase domains, thus avoiding amplification of genes for non-LP metabolites, such as the pyoverdine siderophores present in all fluorescent Pseudomonas. This approach enabled detection of as yet unknown NRPS genes in strains producing viscosin, viscosinamide, WLIP, or lokisin. Furthermore, it proved valuable to identify novel candidate LP producers among Pseudomonas rhizosphere isolates. By phylogenetic analysis of these amplicons, several of the corresponding NRPS genes can be tentatively assigned to the viscosin, amphisin, or entolysin biosynthetic groups, while some others may represent novel NRPS systems.  相似文献   

6.
The diversity and properties of actinobacteria, predominant residents in coral holobionts, have been rarely documented. In this study, we aimed to explore the species diversity, antimicrobial activities and biosynthetic potential of culturable actinomycetes within the tissues of the scleractinian corals Porites lutea, Galaxea fascicularis and Acropora millepora from the South China Sea. A total of 70 strains representing 13 families and 15 genera of actinobacteria were isolated. The antimicrobial activity and biosynthetic potential of fifteen representative filamentous actinomycetes were estimated. Crude fermentation extracts of 6 strains exhibited comparable or greater activities against Vibrio alginolyticus than ciprofloxacin. Seven of the 15 actinomycetes strains possess type I polyketide synthases (PKS-I) and/or nonribosomal peptide synthetases (NRPS) genes. Nine tested strains possess type II polyketide synthases (PKS-II). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these PKS and NRPS gene screening positive strains belong to genera Nocardiopsis, Pseudonocardia, Streptomyces, Micromonospora, Amycolatopsis and Prauserella. One PKS-I and four NRPS fragments showed <70 % similarity to their closest relatives, which suggested the novelty of these genes. This study helps uncover the genetic capacity of stony coral-associated actinomycetes to produce bioactive molecules.  相似文献   

7.
杨瑞先  张拦  彭彪彪  蒙城功 《微生物学报》2017,57(10):1567-1582
【目的】研究药用植物芍药(Paeonia lactiflora Pall.)内生真菌的种群多样性,同时对其可能存在的聚酮合酶(Polyketide synthase,PKS)和非核糖体多肽合成酶(Non-ribosomal peptide synthetase,NRPS)基因多样性进行评估,预测芍药内生真菌产生活性次生代谢产物的潜力。【方法】采用组织分离法获得芍药根部内生真菌菌株,结合形态学特征和ITS序列分析,进行鉴定;利用兼并性引物对内生真菌中存在的聚酮合酶(PKS)基因和非核糖体多肽合成酶(NRPS)基因进行PCR扩增及序列测定分析,构建系统发育树,明确芍药内真菌PKS基因序列和NRPS基因序列的系统进化地位。【结果】从芍药组织块中共分离得到105株内生分离物,去重复后获得52株内生真菌,菌株ITS基因序列信息显示,52株芍药内生真菌隶属于7目、13科、15属,其中小球腔菌属(Leptosphaeria)、土赤壳属(Ilyonectria)和镰孢属(Fusarium)为优势种群;从52株内生真菌中筛选获得13株含PKS基因片段的菌株,8株含NRPS基因片段的菌株,部分菌株功能基因的氨基酸序列与Gen Bank中已知化合物的合成序列具有一定的同源性,预示芍药根部内生真菌具有合成丰富多样的次生代谢产物的潜力。【结论】药用植物芍药根部具有丰富的内生真菌资源,且具有产生活性次生代谢产物的潜力,值得进一步开发研究和应用。  相似文献   

8.
To provide insight into the phylogenetic bacterial diversity of the freshwater sponge Spongilla lacustris, a 16S rRNA gene libraries were constructed from sponge tissues and from lake water. Restriction fragment length polymorphism (RFLP) analysis of >190 freshwater sponge-derived clones resulted in six major restriction patterns, from which 45 clones were chosen for sequencing. The resulting sequences were affiliated with the Alphaproteobacteria (n = 19), the Actinobacteria (n = 15), the Betaproteobacteria (n = 2), and the Chloroflexi (n = 2) lineages. About half of the sequences belonged to previously described actinobacterial (hgc-I) and betaproteobacterial (beta-II) sequence clusters of freshwater bacteria that were also present in the lake water 16S rRNA gene library. At least two novel, deeply rooting alphaproteobacterial lineages were recovered from S. lacustris that showed <89% sequence similarity to known phylogenetic groups. Electron microscopical observations revealed that digested bacterial remnants were contained within food vacuoles of sponge archaeocytes, whereas the extracellular matrix was virtually free of bacteria. This study is the first molecular diversity study of a freshwater sponge and adds to a growing database on the diversity and community composition of sponge-associated microbial consortia.  相似文献   

9.
Members of the Roseobacter clade are abundant and widespread in marine habitats and have very diverse metabolisms. Production of acylated homoserine lactones (AHL) and secondary metabolites, e.g., antibiotics has been described sporadically. This prompted us to screen 22 strains of this group for production of signaling molecules, antagonistic activity against bacteria of different phylogenetic groups, and the presence of genes encoding for nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS), representing enzymes involved in the synthesis of various pharmaceutically important natural products. The screening approach for NRPS and PKS genes was based on polymerase chain reaction (PCR) with degenerate primers specific for conserved sequence motifs. Additionally, sequences from whole genome sequencing projects of organisms of the Roseobacter clade were considered. Obtained PCR products were cloned, sequenced, and compared with genes of known function. With the PCR approach genes showing similarity to known NRPS and PKS genes were found in seven and five strains, respectively, and three PKS and NRPS sequences from genome sequencing projects were obtained. Three strains exhibited antagonistic activity and also showed production of AHL. Overall production of AHL was found in 10 isolates. Phylogenetic analysis of the 16S rRNA gene sequences of the tested organisms showed that several of the AHL-positive strains clustered together. Three strains were positive for three or four categories tested, and were found to be closely related within the genus Phaeobacter. The presence of a highly similar hybrid PKS/NRPS gene locus of unknown function in sequenced genomes of the Roseobacter clade plus the significant similarity of gene fragments from the strains studied to these genes argues for the functional requirement of the encoded hybrid PKS/NRPS complex. Our screening results therefore suggest that the Roseobacter clade is indeed employing PKS/NRPS biochemistry and should thus be further studied as a potential and largely untapped source of secondary metabolites.  相似文献   

10.
抗菌和细胞毒活性海洋细菌的筛选及其次生代谢基因证据   总被引:1,自引:0,他引:1  
从不同海域的海水、海泥和海洋生物中分离海洋细菌,利用琼脂扩散法和MTT法对细菌培养液的乙酸乙酯提取物进行了抗菌和细胞毒活性筛选,并对具有细胞毒活性的细菌菌株进行了16SrRNA系统发生学分析和多聚酮合酶(PKSⅠ型)、非核糖体肽合成酶(NRPS)的筛选。结果显示,在分离到的346株海洋细菌中,42株细菌具有抗菌活性,12株具有细胞毒活性。对12株具有细胞毒活性的细菌菌株进行了16SrRNA系统发生学分析,它们分别属于Agrobacterium,Pseudoalteromons,Bacillus,Paracoccus,Rheinheimera,Aerococcus,Exiguobacterium和Alteromonas8个属。对这12株具有细胞毒活性的细菌菌株进行进一步的PKS和NRPS筛选,得到了4株含有PKSⅠ型的KS结构域或NPRS的A结构域的海洋细菌,为从聚酮和非核糖体肽等生物合成途径去深入研究其次生代谢产物提供了基因学的证据。  相似文献   

11.
In this study, 53 actinomycetes strains were isolated from desert ecosystems located in northeast of Qinghai-Tibet Plateau and grouped into four RFLP patterns. Twenty-six actinomycetes with obvious morphology differences were chosen for phylogenetic diversity study and antimicrobial testing. As a result, the 16S rRNA gene sequencing showed that these strains belonged to Streptomyces, Micromonospora, Saccharothrix, Streptosporangium and Cellulomonas, and that most of the strains had antimicrobial bioactivity. The PKS and NRPS genes detection indicated diversified potential bioactive products of actinomycetes in this ecosystem. Among these strains, Sd-31 was chosen to study the bioactive products using HPLC-MS because of its optimum antimicrobial bioactivity. The result showed that it might produce Granatomycin A, Granatomycin C, and an unknown compound.  相似文献   

12.
The biosynthesis of non-ribosomal peptide and polyketide natural products is facilitated by multimodular enzymes that contain domains responsible for the sequential condensation of amino and carboxylic subunits. These conserved domains provide molecular targets for the discovery of natural products from microbial metagenomes. This study demonstrates the application of tag-encoded FLX amplicon pyrosequencing (TEFAP) targeting non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes as a method for determining the identity and diversity of natural product biosynthesis genes. To validate this approach, we assessed the diversity of NRPS and PKS genes within the microbiomes of six Australian marine sponge species using both TEFAP and metagenomic whole-genome shotgun sequencing approaches. The TEFAP approach identified 100 novel ketosynthase (KS) domain sequences and 400 novel condensation domain sequences within the microbiomes of the six sponges. The diversity of KS domains within the microbiome of a single sponge species Scopalina sp. exceeded that of any previously surveyed marine sponge. Furthermore, this study represented the first to target the condensation domain from NRPS biosynthesis and resulted in the identification of a novel condensation domain lineage. This study highlights the untapped potential of Australian marine sponges for the isolation of novel bioactive natural products. Furthermore, this study demonstrates that TEFAP approaches can be applied to functional genes, involved in natural product biosynthesis, as a tool to aid natural product discovery. It is envisaged that this approach will be used across multiple environments, offering an insight into the biological processes that influence the production of secondary metabolites.  相似文献   

13.
Degenerated primers designed for the detection by polymerase chain reaction of nonribosomal peptide synthetases (NRPS) genes involved in the biosynthesis of lipopeptides were used on genomic DNA from a new isolate of Bacillus thuringiensis CIP 110220. Primers dedicated to surfactin and bacillomycin detection amplified sequences corresponding respectively to the surfactin synthetase operon and to a gene belonging to a new NRPS operon identified in the genome of B. thuringiensis serovar pondicheriensis BSCG 4BA1. A bioinformatics analysis of this operon led to the prediction of an NRPS constituted of seven modules beginning with a condensation starter domain and which could be involved in the biosynthesis of a heptalipopeptide similar to kurstakin. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) performed on whole cells of B. thuringiensis CIP 110220 confirmed the production of kurstakin by this strain. The kurstakin operon was thus used to design a new set of degenerated primers specifically to detect kurstakin genes. These primers were used to screen kurstakin producers in a collection of nine B. thuringiensis strains isolated from different areas in Algeria and two from the Pasteur Institute collection. For eight among the 11 tested strains, the amplified fragment matched with an operon similar to the kurstakin operon and found in the newly sequenced genome of Bacillus cereus or B. thuringiensis serovar pulsiensis, kurstaki, and thuringiensis. Kurstakin production was detected by MALDI-ToF-MS on whole cells for six strains. This production was compared with the spreading of the strains and their antimicrobial activity. Only the spreading can be correlated with the kurstakin production.  相似文献   

14.
The bacteria associated with marine invertebrates are a rich source of bioactive metabolites. In the present study bacteria associated with the sponge Suberites domuncula and its primmorphs (3-dimensional aggregates containing proliferating cells) were isolated and cultured. These bacteria were extracted, and the extracts were assayed for antiangiogenic, hemolytic, antimicrobial, and cytotoxic activities. Our studies revealed that extract obtained from the bacterium (PB2) isolated from sponge primmorphs is a potent angiogenesis inhibitor. In the chick chorio-allantoic membrane (CAM) assay, it showed 50% activity at 5 μg ml−1 and 100% activity at 10 and 20 μg ml−1 concentrations. Extracts obtained from 5 bacterial strains isolated from sponge and its primmorphs showed hemolytic activity. The sponge-associated bacteria belonging to the α subdivision of Proteobacteria and the primmorph-associated bacterium identified as a possible novel Pseudomonas sp. displayed remarkable antimicrobial activity. It is important to note that these bacterial extracts were strongly active against multidrug-resistant clinical strains such as Staphylococcus aureus and Staphylococcus epidermidis, isolated from hospital patients. The bacterial extracts having antimicrobial activity also showed cytotoxicity against HeLa and PC12 cells. In summary, this investigation explores the importance of sponge-associated bacteria as a valuable resource for the discovery of novel bioactive molecules.  相似文献   

15.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

16.
The diversity of the methyl‐coenzyme reductase A (mcrA) and 16S rRNA genes was investigated in gas hydrate containing sediment from the Kazan mud volcano, eastern Mediterranean Sea. mcrA was detected only at 15 and 20 cm below seafloor (cmbsf) from a 40‐cm long push core, while based on chemical profiles of methane, sulfate, and sulfide, possible anaerobic oxidation of methane (AOM) depth was inferred at 12–15 cmbsf. The phylogenetic relationships of the obtained mcrA, archaeal and bacterial 16S rRNA genes, showed that all the found sequences were found in both depths and at similar relative abundances. mcrA diversity was low. All sequences were related to the Methanosarcinales, with the most dominant (77.2%) sequences falling in group mcrA‐e. The 16S rRNA‐based archaeal diversity also revealed low diversity and clear dominance (72.8% of all archaeal phylotypes) of the Methanosarcinales and, in particular, ANME‐2c. Bacteria showed higher diversity but 83.2% of the retrieved phylotypes from both sediment layers belonged to the δ‐Proteobacteria. These phylotypes fell in the SEEP‐SRB1 putative AOM group. In addition, the rest of the less abundant phylotypes were related to yet‐uncultivated representatives of the Actinobacteria, Spirochaetales, and candidate divisions OP11 and WS3 from gas hydrate‐bearing habitats. These phylotype patterns indicate that AOM is occurring in the 15 and 20 cmbsf sediment layers.  相似文献   

17.
In this study, the search for new antibiotics was combined with quantitative ecological studies. The cultured fraction of the associated bacterial communities from ten different Mediterranean sponge species was investigated. To obtain quantitative and qualitative data of sponge-associated bacterial communities and to expand the cultured diversity, different media were used. The largest morphological diversity and highest yield of isolates was obtained by using oligotrophic media, which consisted of natural habitat seawater amended with (1% additional carbon sources. The dominant bacterial morphotypes were determined and bacterial isolates were tested for antimicrobial activity and identified using 16S rDNA sequencing. The sponge-associated most abundant morphotypes were all affiliated to the Alphaproteobacteria and showed antimicrobial activity against at least one of the tested strains. In contrast, the ambient seawater was dominated by Gammaproteobacteria. One single alphaproteobacterium, which was related to Pseudovibrio denitrificans, was shown to dominate the cultured community of at least six of the sponges. This designated MBIC3368-like alphaproteobacterium has been isolated from sponges before and seems to be restricted to associations with members of the phylum Porifera. It displays a weak and unstable antimicrobial activity, which gets easily lost during cultivation. However, this bioactive bacterium was present in the sponges by up to 106 cells per gram wet-weight sponge tissue and dominated the cultured fraction with up to 74%. The association of this alphaproteobacterium with sponges is probably evolutionary young and facultative and possibly involves biologically active secondary metabolites. Besides a demonstrated vertical transfer, additional horizontal transfer between the sponges is assumed. Members of the genus Bacillus displaying antimicrobial activity were found regularly, too. However, actinomycetes, which are known for their production of bioactive substances, were present in very low abundance.  相似文献   

18.
Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin.  相似文献   

19.
The diversity of sponge-associated fungi has been poorly investigated in remote geographical areas like Antarctica. In this study, 101 phenotypically different fungal isolates were obtained from 11 sponge samples collected in King George Island, Antarctica. The analysis of ITS sequences revealed that they belong to the phylum Ascomycota. Sixty-five isolates belong to the genera Geomyces, Penicillium, Epicoccum, Pseudeurotium, Thelebolus, Cladosporium, Aspergillus, Aureobasidium, Phoma, and Trichocladium but 36 isolates could not be identified at genus level. In order to estimate the potential of these isolates as producers of interesting bioactivities, antimicrobial, antitumoral and antioxidant activities of fungal culture extracts were assayed. Around 51 % of the extracts, mainly from the genus Geomyces and non identified relatives, showed antimicrobial activity against some of the bacteria tested. On the other hand, around 42 % of the extracts showed potent antitumoral activity, Geomyces sp. having the best performance. Finally, the potential of the isolated fungi as producers of antioxidant activity seems to be moderate. Our results suggest that fungi associated with Antarctic sponges, particularly Geomyces, would be valuable sources of antimicrobial and antitumoral compounds. To our knowledge, this is the first report describing the biodiversity and the metabolic potential of fungi associated with Antarctic marine sponges.  相似文献   

20.
An exhaustive characterization of the set of non-ribosomal peptide synthetase (NRPS) genes of the corn pathogen, Cochliobolus heterostrophus, and the small molecule peptides produced by the enzymes they encode, has been undertaken to ascertain the role of the peptide metabolites in the fungal cell. To date, the NRPS method of peptide biosynthesis has been described for filamentous ascomycete fungi (and to a limited extent, for basidiomycete fungi) and for bacteria, only. In addition to structural diversity, non-ribosomal peptides have a broad spectrum of biological activities, many are useful in medicine, agriculture, industry, and biological research. However, to suggest that inter-organismal activities is their primary function is likely incorrect; in fact, the physiological significance of these peptides to the producing fungi is largely unknown. We document that NRPS enzymes are purveyors of small molecules for both basal metabolism and for specialized environmental niches and that some are conserved, but most are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号