首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
A number of reports have described the effects of oxidative stress on tumor growth. Therefore, these experiments were designed to test the hypothesis that overexpression of extracellular superoxide dismutase (ecSOD) would inhibit the growth of tumors arising from s.c. implantation of syngenic B16-F1 melanoma cells. C57BL/6 mice were infected i.m. with adenovirus containing either beta-galactosidase (Ad.lacZ) as control or the secreted extracellular isoform of SOD (Ad.ecSOD) 3 days before s.c. implantation of B16-F1 tumor cells. Serum SOD activity was elevated nearly approximately 5-fold over control animals. Two weeks after implantation, B16-F1 tumor size was 65% smaller in mice infected with Ad.ecSOD in comparison with mice infected with Ad.lacZ. However, the presence of SOD did not affect growth rates of B16-F1 cells in vitro. Consistent with smaller tumor volume, tumors from Ad.ecSOD-infected mice also expressed less vascular endothelial growth factor (VEGF). Moreover, in vitro studies using B16-F1 cells confirm that SOD blunts oxidant-dependent VEGF expression. Importantly, CD31 expression and vessel density were markedly reduced in tumors from Ad.ecSOD-infected mice compared with controls. These data suggest that tumor oxidative stress may facilitate tumor vascularization and thus promote tumor growth.  相似文献   

3.
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with proinflammatory, proangiogenic, and protumorigenic properties. The molecular mechanisms underlying the role of MIF in tumorigenesis and angiogenesis are not well understood. To address these roles, an interfering MIF (iMIF) RNA was stably introduced into the B16-F10 mouse melanoma cell line, reducing MIF mRNA expression 1.6-fold and MIF protein expression 2.8-fold relative to control cells. When iMIF cells were subcutaneously injected into C57BL/6 mice, tumor establishment was significantly delayed and there was a marked absence of intratumoral vasculature in iMIF tumors relative to controls. A comparative gene expression analysis of iMIF and control melanoma cell lines revealed that thrombospondin-1 (TSP-1) mRNA expression was up-regulated 88-fold in the iMIF cells by real-time PCR. A 2-fold increase in TSP-1 protein levels was observed in iMIF cell culture supernatants. These results strongly suggest that the delayed tumor establishment and reduced vasculature in iMIF melanomas are linked to the up-regulation of the antiangiogenic TSP-1. They further define a novel function of MIF as a regulator of TSP-1 in a mouse melanoma model.  相似文献   

4.
黑色素瘤是一种预后较差的侵袭性癌症。了解黑色素瘤的分子机制和诊断标志物对黑色素瘤的防治极为重要。LncRNAs在肿瘤的发生发展中发挥重要作用。与正常黑色素细胞相比,LncRNA-177922在B16-F10黑色素瘤中高表达。丝裂源活化蛋白激酶15 (mitogen-activated protein kinase 15, MAPK15) 的缺失影响肿瘤的发生和进展。本研究中,LncRNA-177922在B16-F10细胞中过表达,结果显示,黑色素生成、增殖、迁移相关基因的mRNA和蛋白质水平显著上调(P< 0. 05),自噬相关基因的mRNA水平和蛋白质丰度下调(P< 0. 05),PI3K/AKT/mTOR通路被激活。同时,进一步验证了细胞迁移、增殖和自噬的表型。结果提示,LncRNA-177922靶向MAPK15通过交叉点细胞外调节蛋白激酶 (extracellular regulated protein kinases, ERK)参与调控黑色素生成、增殖、迁移、自噬等B16-F10细胞的生物学特性,可能是一个新的治疗靶点和诊断标志物。  相似文献   

5.
Pannexin 1 (Panx1) is a channel-forming glycoprotein expressed in different cell types of mammalian skin. We examined the role of Panx1 in melanoma tumorigenesis and metastasis since qPCR and Western blots revealed that mouse melanocytes exhibited low levels of Panx1 while increased Panx1 expression was correlated with tumor cell aggressiveness in the isogenic melanoma cell lines (B16-F0, -F10, and -BL6). Panx1 shRNA knockdown (Panx1-KD) generated stable BL6 cell lines, with reduced dye uptake, that showed a marked increase in melanocyte-like cell characteristics including higher melanin production, decreased cell migration and enhanced formation of cellular projections. Western blotting and proteomic analyses using 2D-gel/mass spectroscopy identified vimentin and β-catenin as two of the markers of malignant melanoma that were down-regulated in Panx1-KD cells. Xenograft Panx1-KD cells grown within the chorioallantoic membrane of avian embryos developed tumors that were significantly smaller than controls. Mouse-Alu qPCR of the excised avian embryonic organs revealed that tumor metastasis to the liver was significantly reduced upon Panx1 knockdown. These data suggest that while Panx1 is present in skin melanocytes it is up-regulated during melanoma tumor progression, and tumorigenesis can be inhibited by the knockdown of Panx1 raising the possibility that Panx1 may be a viable target for the treatment of melanoma.  相似文献   

6.
Accumulating evidence indicates that the acidic microenvironments critically influence malignant behaviors of cancer including invasiveness, metastasis, and chemoresistance. Because the vacuolar-type H(+)-ATPase (V-ATPase) has been shown to cause extracellular acidification by pumping protons, we studied the role of V-ATPase in distant metastasis. Real-time PCR analysis revealed that the high-metastatic B16-F10 melanoma cells strongly expressed the a3 isoform V-ATPase compared to the low-metastatic B16 parental cells. Consistent with this, B16-F10 cells created acidic environments in lung metastases by acridine orange staining and strong a3 V-ATPase expression in bone metastases by immunohistochemistry. Immunocytochemical analysis showed B16-F10 cells expressed a3 V-ATPase not only in cytoplasm but also plasma membrane, whereas B16 parental cells exhibited its expression only in cytoplasm. Of note, knockdown of a3 V-ATPase suppressed invasiveness and migration with reduced MMP-2 and MMP-9 expression in B16-F10 cells and significantly decreased lung and bone metastases, despite that tumor growth was not altered. Importantly, administration of a specific V-ATPase a3 inhibitor FR167356 reduced bone metastasis of B16-F10 cells. These results suggest that a3 V-ATPase promotes distant metastasis of B16-F10 cells by creating acidic environments via proton secretion. Our results also suggest that inhibition of the development of cancer-associated acidic environments by suppressing a3 V-ATPase could be a novel therapeutic approach for the treatment of cancer metastasis.  相似文献   

7.
1. The interactions of B16-F1 and B16-F10 tumors with their surrounding tissues in terms of enzyme activities such as cathepsin B, hemoglobin(Hb)-hydrolase, acid phosphatase, beta-glucuronidase and plasminogen activator were investigated when said tumors proliferated locally and at secondary sites throughout the host's circulatory system. 2. In the case of B16-F1 and B16-F10 tumor cells proliferating under the skin, statistical differences were not detected between the enzyme activities of the skin surrounding the tumors and control skin, nor between B16-F1 and B16-F10 tumors, except for beta-glucuronidase. 3. In the case of B16-F1 and B16-F10 tumor cells metastasizing to lung, statistical differences were detected between numerous enzyme activities of the lung tissues surrounding the tumors and control lung tissue, and also between B16-F1 and B16-F10 tumors. 4. The activities of cathepsin B and acid phosphatase of lung tissue surrounding B16-F1 tumor were lower than those of the control lung. 5. beta-Glucuronidase activity of lung tissue surrounding B16-F10 tumor was higher than that of the control lung. 6. The activities of cathepsin B, Hb-hydrolase and beta-glucuronidase of the B16-F10 tumor were higher than those of the B16-F1 tumor. 7. Results indicate that metastasized B16 melanoma tumor cells interact with surrounding lung tissues, and that cathepsin B, Hb-hydrolase and beta-glucuronidase might play important roles in the metastasis of the malignant tumor.  相似文献   

8.
Sequentially treating human melanoma cell lines by priming with interferon-gamma before adding interferon-beta was previously found to be the most efficient protocol for producing concurrently increased expression of the three surface antigens B7-1, intercellular adhesion molecule-1 and human histocompatibility leucocyte antigens Class I. The present study describes similar outcomes when the same sequential intercellular adhesion molecule-based protocol is applied to murine B16-F10 melanoma cells as well as preclinical studies using the B16-F10 model as a poorly immunogenic melanoma. Thus, treating B16-F10 cells or a highly expressing B7-1 transfected subline (B16-F10/B7-1 hi) by priming with interferon-gamma for 24 h before adding interferon-beta for a further 48 h (interferon-gamma 72/beta 48) increased expression of all three surface antigens, particularly major histocompatibility complex class I whose increased expression was sustained for several days. As a whole tumour cell vaccine, interferon-gamma 72/beta 48 treated B16-F10 cells produced greater levels of cytoxic T lymphocyte response compared to vaccines prepared from cells treated with a single type of interferon. Furthermore, B16-F10 cells expressing high levels of B7-1 and treated using the interferon-gamma 72/beta 48 protocol (interferon-gamma 72/beta 48-treated B16-F10/B7-1 hi) produced substantially increased cytoxic T lymphocyte responses with a fivefold greater synergy than the combined results of either interferon treated or B7-1 expressing cells tested individually. The resulting CD8+ cytoxic T lymphocyte showed greater specificity for B16-F10 cells with tenfold higher killing than for syngeneic EL-4 lymphoma cells. Killing proceeded via the perforin-mediated pathway. CTL responses were induced independent of CD4+ T helper cells. The majority of mice receiving interferon-gamma 72/beta 48-treated B16-F10/B7-1 hi vaccine in vivo remained tumour free after challenge with 5 x 105 live B16-F10 cells expressing intermediate B7-1 levels. The novel strategy described will help enhance vaccine potency when applied clinically to prepare whole cell based cancer vaccine therapies.  相似文献   

9.
Early metastatic growth occurs at sites of vascular arrest of blood-borne cancer cells and is entirely intravascular. Here we show that lung colonization by B16-F10 cells is licensed by beta(4) integrin adhesion to the mouse lung endothelial Ca(2+)-activated chloride channel protein mCLCA1. In a manner independent of Met, beta(4) integrin-mCLCA1-ligation leads to complexing with and activation of focal adhesion kinase (FAK) and downstream signaling to extracellular signal-regulated kinase (ERK). FAK/ERK signaling is Src-dependent and is interrupted by adhesion blocking antibodies and by dominant-negative (dn)-FAK mutants. Levels of ERK activation in B16-F10 cells transfected with wild-type or mutant FAK are closely associated with rates of proliferation and bromodeoxyuridine (BrdUrd) incorporation of tumor cells grown in mCLCA1-coated dishes, the ability to form tumor cell colonies on CLCA-expressing endothelial cell monolayers, and the extent of pulmonary metastatic growth. Parallel with the transfection rates, B16-F10 cells transfected with dn-FAK mutants and injected intravenously into syngeneic mice generate approximately half the number and size of lung colonies that vector-transfected B16-F10 cells produce. For the first time, beta(4) integrin ligation to its novel CLCA-adhesion partner is shown to be associated with FAK complexing, activation, and signaling to promote early, intravascular, metastatic growth.  相似文献   

10.
Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration was evaluated by shRNA targeting of endogenous caveolin-1 in MDA-MB-231 human breast cancer cells and ectopic expression in B16-F10 mouse melanoma cells. Depletion of caveolin-1 in MDA-MB-231 cells reduced, while expression in B16-F10 cells promoted migration, polarization and focal adhesion turnover in a sequence of events that involved phosphorylation of tyrosine-14 and Rac-1 activation. In B16-F10 cells, expression of a non-phosphorylatable tyrosine-14 to phenylalanine mutant failed to recapitulate the effects observed with wild-type caveolin-1. Alternatively, treatment of MDA-MB-231 cells with the Src family kinase inhibitor PP2 reduced caveolin-1 phosphorylation on tyrosine-14 and cell migration. Surprisingly, unlike for fibroblasts, caveolin-1 polarization and re-localization to the trailing edge were not observed in migrating metastatic cells. Thus, expression and phosphorylation, but not polarization of caveolin-1 favor the highly mobile phenotype of metastatic cells.  相似文献   

11.
The melanotropin (MSH) receptor of mouse B16-F1 melanoma cells was characterized by photoaffinity cross-linking, using a potent alpha-MSH photolabel, [norleucine4, D-phenylalanine7, 1'-(2-nitro-4-azidophenylsulfenyl)-tryptophan9]-alpha-melanotropin (Naps-MSH). Its monoiodinated form, 125I-Naps-MSH, displayed a approximately 6.5-fold higher biological activity than alpha-MSH. Scatchard analysis of the saturation curves with 125I-Naps-MSH revealed approximately 20,000 receptors/B16-F1 cell and an apparent KD of approximately 0.3 nM. Analysis of the cross-linked MSH receptor by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that a photolabeled band of approximately 45 kDa occurs in B16-F1, B16-F10, and Cloudman S91 mouse melanoma, as well as in human D10 and 205 melanoma but not in non-melanoma cells. The labeled 45-kDa protein had an isoelectric point of 4.5-4.9 as determined by two-dimensional gel electrophoresis. Treatment of the labeled 45-kDa protein of B16-F1 cell membranes by neuraminidase shifted the band to approximately 42 kDa. A similar band of about 42 kDa was also observed after receptor labeling of B16-W4 cells, a cell line with a decreased number of terminal N-linked neuraminyl residues. These results indicate that the labeled 45-kDa glycoprotein contains terminal sialic acid residues, explaining the low pI of this protein, and that it is characteristic for melanoma cells and hence part of the MSH receptor.  相似文献   

12.
Leptin is an adipocyte-derived hormone that regulates energy expenditure and food intake. A significant role for leptin in breast cancer has also been indicated by the resistance of leptin knockout mice in development of mammary tumors. In vitro, leptin induces proliferation of MCF-7 cells by activating cellular signaling pathways (1, 11, 12, 16, 17, 56). As leptin is emerging as an important factor for tumor growth, and hormones can exert their actions via autocrine/paracrine mechanisms, we hypothesized leptin may act by regulating epithelial-derived proteins. To test this hypothesis, leptin-regulated proteins secreted from MCF-7 mammary tumor cells were identified using proteomics techniques. Treatment of MCF-7 cells with 500 ng/ml leptin for 24 hours resulted in a 40% increase in cell number and a 5-fold increase in protein secretion as compared to controls. Establishing the significance of leptin-induced secreted factors, the addition of conditioned media from leptin-treated MCF-7 cells to synchronized MCF-7 cells resulted in 40% increase in cell number. Identification of leptin-regulated secreted proteins was done by 2D gel electrophoresis coupled with MALDI-TOF mass spectrometry. Proteins identified using Pro Found software and NCBI database included KF10 Collagen Precursor, Serologically Defined Breast Cancer Antigen NY-BR-62 and Cortactin Isoform a. A Human Cytokine Antibody Array system was used to identify low abundant proteins in the media of control and 500 ng/ml leptin-stimulated MCF-7 cells. In leptin treated cells, levels of FGF-9 were increased while IGFBP-3 and TGF-beta3 levels were decreased. Many previous studies have focused on the regulation of distinct cellular proteins by leptin during mammary tumor cell proliferation. However, ours is the first study to identify leptin-regulated secreted proteins, many of which are known to play important roles in cancer. Our data support that leptin can influence mammary tumor growth and progression through regulation of autocrine/paracrine factors and by modulating the extracellular matrix composition.  相似文献   

13.
Highly metastatic B16 melanoma (B16M)-F10 cells, as compared with the low metastatic B16M-F1 line, have higher GSH content and preferentially overexpress BCL-2. In addition to its anti-apoptotic properties, BCL-2 inhibits efflux of GSH from B16M-F10 cells and thereby may facilitate metastatic cell resistance against endothelium-induced oxidative/nitrosative stress. Thus, we investigated in B16M-F10 cells which molecular mechanisms channel GSH release and whether their modulation may influence metastatic activity. GSH efflux was abolished in multidrug resistance protein 1 knock-out (MRP-/-1) B16M-F10 transfected with the Bcl-2 gene or in MRP-/-1 B16M-F10 cells incubated with l-methionine, which indicates that GSH release from B16M-F10 cells is channeled through MRP1 and a BCL-2-dependent system (likely related to an l-methionine-sensitive GSH carrier previously detected in hepatocytes). The BCL-2-dependent system was identified as the cystic fibrosis transmembrane conductance regulator, since monoclonal antibodies against this ion channel or H-89 (a protein kinase A-selective inhibitor)-induced inhibition of cystic fibrosis transmembrane conductance regulator gene expression completely blocked the BCL-2-sensitive GSH release. By using a perifusion system that mimics in vivo conditions, we found that GSH depletion in metastatic cells can be achieved by using Bcl-2 antisense oligodeoxynucleotide- and verapamil (an MRP1 activator)-induced acceleration of GSH efflux, in combination with acivicin-induced inhibition of gamma-glutamyltranspeptidase (which limits GSH synthesis by preventing cysteine generation from extracellular GSH). When applied under in vivo conditions, this strategy increased tumor cytotoxicity (up to approximately 90%) during B16M-F10 cell adhesion to the hepatic sinusoidal endothelium.  相似文献   

14.
Tumor-derived microvesicles are rich in metastasis-related proteases and play a role in the interactions between tumor cells and tumor microenvironment in tumor metastasis. Because shed microvesicles may remain in the extracellular environment around tumor cells, the microvesicle membrane protein may be the potential target for cancer therapy. Here we report that chromosome segregation 1–like (CSE1L) protein is a microvesicle membrane protein and is a potential target for cancer therapy. v-H-Ras expression induced extracellular signal–regulated kinase (ERK)-dependent CSE1L phosphorylation and microvesicle biogenesis in various cancer cells. CSE1L overexpression also triggered microvesicle generation, and CSE1L knockdown diminished v-H-Ras–induced microvesicle generation, matrix metalloproteinase (MMP)-2 and MMP-9 secretion and metastasis of B16F10 melanoma cells. CSE1L was preferentially accumulated in microvesicles and was located in the microvesicle membrane. Furthermore, anti-CSE1L antibody–conjugated quantum dots could target tumors in animal models. Our findings highlight a novel role of Ras-ERK signaling in tumor progression and suggest that CSE1L may be involved in the “early” and “late” metastasis of tumor cells in tumorigenesis. Furthermore, the novel microvesicle membrane protein, CSE1L, may have clinical utility in cancer diagnosis and targeted cancer therapy.  相似文献   

15.
Triflavin, an Arg-Gly-Asp (RGD)-containing snake venom peptide, inhibits B16-F10 mouse melanoma cell adhesion to extracellular matrices, e.g., fibronectin, vitronectin, fibrinogen, and collagen type I. In this study, GRGDS inhibits B16-F10 mouse melanoma cell adhesion to immobilized triflavin in a dose-dependent manner. In addition, flow-cytometric analysis and the fluorescence staining method in which FITC-triflavin is utilized as a binding ligand were used. GRGDS inhibits the binding of FITC-triflavin to B16-F10 cells. Additionally, the above results suggest that triflavin directly binds to its receptors expressed on B16-F10 cell surface primarily via its RGD sequence, there-by inhibiting B16-F10 cell adhesion to extracellular matrices.  相似文献   

16.
Dendritic cell (DC)-based vaccination represents a promising approach to harness the specificity and potency of the immune system to combat cancer. Finding optimal strategies for tumor Ag preparation and subsequent pulsing of DC, as well as improving the immunogenicity of weak tumor Ags remain among the first challenges of this approach. In this report, we use a prophylactic vaccine consisting of DC loaded with whole, nonmanipulated B16-F10 melanoma cells that had been stressed by heat shock and gamma irradiation. Stressed B16-F10 cells underwent apoptosis and were internalized by bone marrow-derived DC during coculture. Surprisingly, coculture of DC with stressed B16-F10 undergoing apoptosis and necrosis did not induce DC maturation. However, a marked retardation in tumor growth was observed in C57BL/6 mice immunized using DC loaded with stressed B16-F10 cells and subsequently challenged with B16-F10 cells. Growth retardation was further increased by treating DC with LPS before in vivo administration. In vivo depletion studies revealed that both CD8(+) and CD4(+) T cells played a critical role in retarding tumor growth. In addition, treatment with anti-CD25 Ab to deplete CD4(+)CD25(+) regulatory T cells before DC vaccination considerably improved the effect of the vaccine and allowed the development of long-lived immune responses that were tumor protective. Our results demonstrate that depletion of regulatory T cells is an effective approach to improving the success of DC-based vaccination against weakly immunogenic tumors. Such a strategy can be readily applied to other tumor models and extended to therapeutic vaccination settings.  相似文献   

17.
Colorectal cancer is the second leading killer cancer worldwide and presently the most common cancer among males in Singapore. The study aimed to detect changes of protein profiles associated with the process of colorectal tumorigenesis to identify specific protein markers for early colorectal cancer detection and diagnosis or as potential therapeutic targets. Seven pairs of colorectal cancer tissues and adjacent normal mucosa were examined by two-dimensional gel electrophoresis at basic pH range (pH 7-10). Intensity changes of 34 spots were detected with statistical significance. 16 of the 34 spots were identified by MALDI-TOF/TOF tandem mass spectrometry. Changes in protein expression levels revealed a significantly enhanced glycolytic pathway (Warburg effect), a decreased gluconeogenesis, a suppressed glucuronic acid pathway, and an impaired tricarboxylic acid cycle. Observed changes in protein abundance were verified by two-dimensional DIGE. These changes reveal an underlying mechanism of colorectal tumorigenesis in which the roles of impaired tricarboxylic acid cycle and the Warburg effect may be critical.  相似文献   

18.
核糖核酸酶抑制因子(ribonuclease inhibitor,RI)是胞浆内的一种酸性蛋白质.已有研究证明,RI与核糖核酸酶A(RNaseA)和血管生成素(angiogenin,ANG)结合可抑制其活性.本室前期实验证实,RI可有效抑制某些肿瘤的生长和转移. 然而,RI抑制肿瘤的分子机制尚不清楚. 本研究探讨RI对小鼠黑色素瘤B16-F10细胞生长和凋亡的影响及其机制. MTT法结合流式细胞术分析结果证明,RI基因稳定转染导致B16+F10黑色素瘤细胞S期阻滞,抑制B16-F10黑色素瘤细胞增殖. Annexin V/PI结合流式细胞术结果显示,RI过表达引起细胞凋亡.与此相一致,蛋白质印迹分析显示,过表达RI引起抗凋亡分子Bcl-2表达下调,而Bax上调,同时伴有Pro-casepase 3激活. C57BL/ 6小鼠移植成瘤实验显示,与对照相比,转染RI的B16-F10细胞形成的肿瘤重量显著减少,同时伴有肿瘤组织微血管密度降低.提示RI过表达能抑制微血管生成. 此外,体内外组织/细胞免疫化学和蛋白质印迹结果揭示,过表达RI可显著抑制整合素连接激酶(integrin-linked kinase,ILK)下游靶分子Akt和GSK-3β的磷酸化,并降低β-联蛋白的表达.研究结果证明,过表达RI可通过抑制ILK/ PI3K/AKT信号通路,促进细胞凋亡,引起S期阻滞,并抑制血管生成,从而显著抑制小鼠黑色素瘤B16-F10细胞在体内、外的生长.上述结果提示,RI可能是治疗黑色素瘤的有效分子靶点.  相似文献   

19.
We characterized the metastatic ability and mortality of four different mouse melanoma cell lines, B16-F0, -F1, -F10 and -BL6. B16-F0 is the parent cell line. B16-F1 was obtained by a one-time selective procedure and B16-F10 by a ten-time selective procedure using Fidler's method. B16-BL6 derived from B16-F10 has much more invasive activity than B16-F10. To investigate the difference in mortal malignancy among B16-F0, -F1, -F10 and -BL6, we examined the survival time of syngeneic C57BL/6Cr mice intravenously inoculated with these cells. As a control, we used the C57BL/6J-embryo mouse fibroblast-like semi-normal cell line. The ability to form lung metastatic nodules in mice gradually increased in the order: B16-F0, -F1, and -F10 (=-BL6). C57BL/6J-embryo cell (1 x 10(5)/mouse)-inoculated mice survived for over 46 days. B16-F0, -F1, -F10 and -BL6 (1 x 10(5)/mouse)-inoculated mice survived 31.4+/-4.4 (7), 25.7+/-2.8 (7), 23.6+/-1.5 (7) and 25.3+/-2.3 (7) days [mean+/-S.D. (number of mice)], respectively. According to the Mann-Whitney test, the B16-F0 inoculated group versus -F1 inoculated group (P<0.05), -F0 inoculated group versus -BL6 inoculated group (P<0.05), and -F0 inoculated group versus -F10 inoculated group (P<0.01) were significantly different, but the B16-F1 group versus -F10 group, -F1 group versus -BL6 group, and -F10 group versus -BL6 group were not. These results suggest that mortal malignancy is not necessarily correlated with lung-colonizing potential and even only one-time selected B16-F0 mouse melanoma cells are useful as an experimental metastatic model in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号