首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

2.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

3.
The stiffness of the single myosin motor (epsilon) is determined in skinned fibers from rabbit psoas muscle by both mechanical and thermodynamic approaches. Changes in the elastic strain of the half-sarcomere (hs) are measured by fast mechanics both in rigor, when all myosin heads are attached, and during active contraction, with the isometric force (T0) modulated by changing either [Ca2+] or temperature. The hs compliance is 43.0+/-0.8 nm MPa-1 in isometric contraction at saturating [Ca2+], whereas in rigor it is 28.2+/-1.1 nm MPa-1. The equivalent compliance of myofilaments is 21.0+/-3.3 nm MPa-1. Accordingly, the stiffness of the ensemble of myosin heads attached in the hs is 45.5+/-1.7 kPa nm-1 in isometric contraction at saturating [Ca2+] (e0), and in rigor (er) it rises to 138.9+/-21.2 kPa nm-1. Epsilon, calculated from er and the lattice molecular dimensions, is 1.21+/-0.18 pN nm-1. epsilon estimated, using a thermodynamic approach, from the relation of T0 at saturating [Ca2+] versus the reciprocal of absolute temperature is 1.25+/-0.14 pN nm-1, similar to that estimated for fibers in rigor. Consequently, the ratio e0/er (0.33+/-0.05) can be used to estimate the fraction of attached heads during isometric contraction at saturating [Ca2+]. If the osmotic agent dextran T-500 (4 g/100 ml) is used to reduce the lateral filament spacing of the relaxed fiber to the value before skinning, both e0 and er increase by approximately 40%. Epsilon becomes approximately 1.7 pN nm-1 and the fraction and the force of myosin heads attached in the isometric contraction remain the same as before dextran application. The finding that the fraction of myosin heads attached to actin in an isometric contraction is 0.33 rules out the hypothesis of multiple mechanical cycles per ATP hydrolyzed.  相似文献   

4.
The duty ratio, or the part of the working cycle in which a myosin molecule is strongly attached to actin, determines motor processivity and is required to evaluate the force generated by each molecule. In muscle, it is equal to the fraction of myosin heads that are strongly, or stereospecifically, bound to the thin filaments. Estimates of this fraction during isometric contraction based on stiffness measurements or the intensities of the equatorial or meridional x-ray reflections vary significantly. Here, we determined this value using the intensity of the first actin layer line, A1, in the low-angle x-ray diffraction patterns of permeable fibers from rabbit skeletal muscle. We calibrated the A1 intensity by considering that the intensity in the relaxed and rigor states corresponds to 0% and 100% of myosin heads bound to actin, respectively. The fibers maximally activated with Ca2+ at 4°C were heated to 31–34°C with a Joule temperature jump (T-jump). Rigor and relaxed-state measurements were obtained on the same fibers. The intensity of the inner part of A1 during isometric contraction compared with that in rigor corresponds to 41–43% stereospecifically bound myosin heads at near-physiological temperature, or an average force produced by a head of ∼6.3 pN.  相似文献   

5.
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin.  相似文献   

6.
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ~40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle.  相似文献   

7.
A direct modeling approach was used to quantitatively interpret the two-dimensional x-ray diffraction patterns obtained from contracting mammalian skeletal muscle. The dependence of the calculated layer line intensities on the number of myosin heads bound to the thin filaments, on the conformation of these heads and on their mode of attachment to actin, was studied systematically. Results of modeling are compared to experimental data collected from permeabilized fibers from rabbit skeletal muscle contracting at 5°C and 30°C and developing low and high isometric tension, respectively. The results of the modeling show that: i), the intensity of the first actin layer line is independent of the tilt of the light chain domains of myosin heads and can be used as a measure of the fraction of myosin heads stereospecifically attached to actin; ii), during isometric contraction at near physiological temperature, the fraction of these heads is ∼40% and the light chain domains of the majority of them are more perpendicular to the filament axis than in rigor; and iii), at low temperature, when isometric tension is low, a majority of the attached myosin heads are bound to actin nonstereospecifically whereas at high temperature and tension they are bound stereospecifically.  相似文献   

8.
The orientations of the N- and C-terminal lobes of the cardiac isoform of the myosin regulatory light chain (cRLC) in the fully dephosphorylated state in ventricular trabeculae from rat heart were determined using polarized fluorescence from bifunctional sulforhodamine probes. cRLC mutants with one of eight pairs of surface-accessible cysteines were expressed, labeled with bifunctional sulforhodamine, and exchanged into demembranated trabeculae to replace some of the native cRLC. Polarized fluorescence data from the probes in each lobe were combined with RLC crystal structures to calculate the lobe orientation distribution with respect to the filament axis. The orientation distribution of the N-lobe had three distinct peaks (N1–N3) at similar angles in relaxation, isometric contraction, and rigor. The orientation distribution of the C-lobe had four peaks (C1–C4) in relaxation and isometric contraction, but only two of these (C2 and C4) remained in rigor. The N3 and C4 orientations are close to those of the corresponding RLC lobes in myosin head fragments bound to isolated actin filaments in the absence of ATP (in rigor), but also close to those of the pair of heads folded back against the filament surface in isolated thick filaments in the so-called J-motif conformation. The N1 and C1 orientations are close to those expected for actin-bound myosin heads with their light chain domains in a pre-powerstroke conformation. The N2 and C3 orientations have not been observed previously. The results show that the average change in orientation of the RLC region of the myosin heads on activation of cardiac muscle is small; the RLC regions of most heads remain in the same conformation as in relaxation. This suggests that the orientation of the dephosphorylated RLC region of myosin heads in cardiac muscle is primarily determined by an interaction with the thick filament surface.  相似文献   

9.
We have used electron paramagnetic resonance (EPR) spectroscopy to detect ATP- and calcium-induced changes in the structure of spin-labeled myosin heads in glycerinated rabbit psoas muscle fibers in key physiological states. The probe was a nitroxide iodoacetamide derivative attached selectively to myosin SH1 (Cys 707), the conventional EPR spectra of which have been shown to resolve several conformational states of the myosin ATPase cycle, on the basis of nanosecond rotational motion within the protein. Spectra were acquired in rigor and during the steady-state phases of relaxation and isometric contraction. Spectral components corresponding to specific conformational states and biochemical intermediates were detected and assigned by reference to EPR spectra of trapped kinetic intermediates. In the absence of ATP, all of the myosin heads were rigidly attached to the thin filament, and only a single conformation was detected, in which there was no sub-microsecond probe motion. In relaxation, the EPR spectrum resolved two conformations of the myosin head that are distinct from rigor. These structural states were virtually identical to those observed previously for isolated myosin and were assigned to the populations of the M*.ATP and M**.ADP.Pi states. During isometric contraction, the EPR spectrum resolves the same two conformations observed in relaxation, plus a small fraction (20-30%) of heads in the oriented actin-bound conformation that is observed in rigor. This rigor-like component is a calcium-dependent, actin-bound state that may represent force-generating cross-bridges. As the spin label is located near the nucleotide-binding pocket in a region proposed to be pivotal for large-scale force-generating structural changes in myosin, we propose that the observed spectroscopic changes indicate directly the key steps in energy transduction in the molecular motor of contracting muscle.  相似文献   

10.
P G Fajer 《Biophysical journal》1994,66(6):2039-2050
The determination of the iodoacetamide spin label orientation in myosin heads (Fajer, 1994) allows us for the first time to determine directly protein orientation from EPR spectra. Computational simulations have been used to determine the sensitivity of EPR to both torsional and tilting motions of myosin heads. For rigor heads (no nucleotide), we can detect 0.2 degree changes in the tilt angle and 4 degrees in the torsion of the head. Sensitivity decreases with increasing head disorder, but even in the presence of +/- 30 degrees disorder as expected for detached heads, 10 degree changes in the center of the orientational distribution can be detected. We have combined these numerical simulations with a Simplex optimization to compare the orientation of intrinsic heads, with the orientation of labeled extrinsic heads that have been infused into unlabeled muscle fibers. The near identity (within 2 degrees) of the orientational distribution in the two instances can be attributed to myosin elasticity taking up the mechanical strain induced by the mismatch of myosin and actin filament periodicity. A similar analysis of the spectra of fibers with ADP bound to myosin revealed a small (approximately 5 degrees-10 degrees) torsional reorientation, without a substantial change of the tilt angle (< 2 degrees).  相似文献   

11.
Detailed structural analysis of muscles normally used to study myosin cross-bridge behavior (e.g., frog sartorius muscle, insect flight muscle) is extremely difficult due to the statistical disorder inherent in their myosin filament arrays. Bony fish muscle is different from all other muscle types in having a myosin filament (A-Band) array with good three-dimensional (crystalline) regularity that is coherent right across each myofibril. Rigorous structure analysis is feasible with fish muscle. We show that low-angle x-ray diffraction patterns from plaice fin muscle contain characteristic vertebrate layer lines at orders of 429 (+/- 0.2) A, that these layer lines are well sampled by row-lines from a simple hexagonal lattice of a-spacing 470 (+/- 2.0) A at rest length and that there are meridional reflections, due to axial perturbations of the basic helix of myosin heads, similar in position to those from frog muscle but differing in relative intensities. Clear trends based on modeling to a resolution of 130 A of the observed intensities in the low angle x-ray diffraction pattern from relaxed plaice fin muscle suggest that: (a) the pattern out to 130 A is more sensitive to the distribution of the two heads than it is to details of the head shape, (b) both heads in one myosin molecule probably tilt axially in the same direction by approximately 20-40 degrees relative to a normal to the thick filament backbone, (c) the center of mass of the heads is at 145 to 160 A radius, and (d) the two heads form a compact structure by lying closely adjacent to each other and almost parallel. Little rotational disorder of the heads can occur. Because of its crystallinity, bony fish muscle provides a uniquely useful structural probe of myosin cross-bridge behavior in other muscle states such as rigor and active contraction.  相似文献   

12.
We have measured the microsecond rotational motions of myosin heads in contracting rabbit psoas muscle fibers by detecting the transient phosphorescence anisotropy of eosin-5-maleimide attached specifically to the myosin head. Experiments were performed on small bundles (10-20 fibers) of glycerinated rabbit psoas muscle fibers at 4 degrees C. The isometric tension and physiological ATPase activity of activated fibers were unaffected by labeling 60-80% of the heads. Following excitation of the probes by a 10-ns laser pulse polarized parallel to the fiber axis, the time-resolved emission anisotropy of muscle fibers in rigor (no ATP) showed no decay from 1 microsecond to 1 ms (r infinity = 0.095), indicating that all heads are rigidly attached to actin on this time scale. In relaxation (5 mM MgATP but no Ca2+), the anisotropy decayed substantially over the microsecond time range, from an initial anisotropy (r0) of 0.066 to a final anisotropy (r infinity) of 0.034, indicating large-amplitude rotational motions with correlation times of about 10 and 150 microseconds and an overall angular range of 40-50 degrees. In isometric contraction (MgATP plus saturating Ca2+), the amplitude of the anisotropy decay (and thus the amplitude of the microsecond motion) is slightly less than in relaxation, and the rotational correlation times are about twice as long, indicating slower motions than those observed in relaxation. While the residual anisotropy (at 1 ms) in contraction is much closer to that in relaxation than in rigor, the initial anisotropy (at 1 microsecond) is approximately equidistant between those of rigor and relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain.  相似文献   

14.
The molecular mechanism of muscle contraction was investigated in intact muscle fibres by X-ray diffraction. Changes in the intensities of the axial X-ray reflections produced by imposing rapid changes in fibre length establish the average conformation of the myosin heads during active isometric contraction, and show that the heads tilt during the elastic response to a change in fibre length and during the elementary force generating process: the working stroke. X-ray interference between the two arrays of myosin heads in each filament allows the axial motions of the heads following a sudden drop in force from the isometric level to be measured in situ with unprecedented precision. At low load, the average working stroke is 12 nm, which is consistent with crystallographic studies. The working stroke is smaller and slower at a higher load. The compliance of the actin and myosin filaments was also determined from the change in the axial spacings of the X-ray reflections following a force step, and shown to be responsible for most of the sarcomere compliance. The mechanical properties of the sarcomere depend on both the motor actions of the myosin heads and the compliance of the myosin and actin filaments.  相似文献   

15.
Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.  相似文献   

16.
Electron micrographic tomograms of isometrically active insect flight muscle, freeze substituted after rapid freezing, show binding of single myosin heads at varying angles that is largely restricted to actin target zones every 38.7 nm. To quantify the parameters that govern this pattern, we measured the number and position of attached myosin heads by tracing cross-bridges through the three-dimensional tomogram from their origins on 14.5-nm-spaced shelves along the thick filament to their thin filament attachments in the target zones. The relationship between the probability of cross-bridge formation and axial offset between the shelf and target zone center was well fitted by a Gaussian distribution. One head of each myosin whose origin is close to an actin target zone forms a cross-bridge most of the time. The probability of cross-bridge formation remains high for myosin heads originating within 8 nm axially of the target zone center and is low outside 12 nm. We infer that most target zone cross-bridges are nearly perpendicular to the filaments (60% within 11 degrees ). The results suggest that in isometric contraction, most cross-bridges maintain tension near the beginning of their working stroke at angles near perpendicular to the filament axis. Moreover, in the absence of filament sliding, cross-bridges cannot change tilt angle while attached nor reach other target zones while detached, so may cycle repeatedly on and off the same actin target monomer.  相似文献   

17.
We have used electron paramagnetic resonance (EPR) spectra to study spin labels selectively and rigidly attached to myosin heads in glycerinated rabbit psoas muscle fibers. Because the angle between the magnetic field and the principal axis of the probe determines the position of the EPR absorption line, spectra from labeled fibers oriented parallel to the magnetic field yielded directly the distribution of spin label orientations relative to the fiber axis. Two spin labels, having reactivities resembling iodoacetamide (IASL) and maleimide (MSL), were used. In rigor fibers with complete filament overlap, both labels displayed a narrow angular distribution, full width at half maximum approximately 15 degrees, centered at angles of 68 degrees (IASL) and 82 degrees (MSL). Myosin subfragments (heavy meromyosin and subfragment-1) were labeled and allowed to diffuse into fibers. The resulting spectra showed the same sharp angular distribution that was found for the labeled fibers. Thus is appears that virtually all myosin heads in a rigor fiber have the same orientation relative to the fiber axis, and this orientation is determined by the actomyosin bond. Experiments with stretched fibers indicated that the spin labels on the fraction of heads not interacting with actin filaments had a broad angular distribution. Addition of ATP to unstretched fibers under relaxing conditions produced orientational disorder, resulting in a spectrum almost indistinguishable from that of an isotropic distribution of probes. Addition of either an ATP analog (AMPPNP) or pyrophosphate produced partial disorder. That is a fraction of the probes remained sharply oriented as in rigor while a second fraction was in a disordered distribution similar to that of relaxed fibers.  相似文献   

18.
Structural changes of contractile proteins were examined by millisecond time-resolved two-dimensional x-ray diffraction recordings during relaxation of skinned skeletal muscle fibers from rigor after caged ATP photolysis. It is known that the initial dissociation of the rigor actomyosin complex is followed by a period of transient active contraction, which is markedly prolonged in the presence of ADP by a mechanism yet to be clarified. Both single-headed (overstretched muscle fibers with exogenous myosin subfragment-1) and two-headed (fibers with full filament overlap) preparations were used. Analyses of various actin-based layer line reflections from both specimens showed the following: 1), The dissociation of the rigor actomyosin complex was fast and only modestly decelerated by ADP and occurred in a single exponential manner without passing through any detectable transitory state. Its ADP sensitivity was greater in the two-headed preparation but fell short of explaining the large ADP effect on the transient active contraction. 2), The decay of the activated state of the thin filament followed the time course of tension more closely in an ADP-dependent manner. These results suggest that the interplay between the reattached active myosin heads and the thin filament is responsible for the prolonged active contraction in the presence of ADP.  相似文献   

19.
B Hambly  K Franks    R Cooke 《Biophysical journal》1991,59(1):127-138
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which labeled LC2 had been exchanged directly. However, the fraction of disordered probes was greater than seen in fibers. In summary, the above data indicate that the region of the myosin head proximal to the thick filament is ordered in rigor, and disordered in relaxation.  相似文献   

20.
Calculation of the size of the power stroke of the myosin motor in contracting muscle requires knowledge of the compliance of the myofilaments. Current estimates of actin compliance vary significantly introducing uncertainty in the mechanical parameters of the motor. Using x-ray diffraction on small bundles of permeabilized fibers from rabbit muscle we show that strong binding of myosin heads changes directly the actin helix. The spacing of the 2.73-nm meridional x-ray reflection increased by 0.22% when relaxed fibers were put into low-tension rigor (<10 kN/m(2)) demonstrating that strongly bound myosin heads elongate the actin filaments even in the absence of external tension. The pitch of the 5.9-nm actin layer line increased by approximately 0.62% and that of the 5.1-nm layer line decreased by approximately 0.26%, suggesting that the elongation is accompanied by a decrease in its helical angle (approximately 166 degrees) by approximately 0.8 degrees. This effect explains the difference between actin compliance revealed from mechanical experiments with single fibers and from x-ray diffraction on whole muscles. Our measurement of actin compliance obtained by applying tension to fibers in rigor is consistent with the results of mechanical measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号