首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
The orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ~40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle.  相似文献   

2.
The orientation of the light-chain region of myosin heads in relaxed, rigor, and isometrically contracting fibers from rabbit psoas muscle was studied by fluorescence polarization. Cysteine 108 of chicken gizzard myosin regulatory light chain (cgRLC) was covalently modified with iodoacetamidotetramethylrhodamine (iodo-ATR). Native RLC of single glycerinated muscle fibers was exchanged for labeled cgRLC in a low [Mg2+] rigor solution at 30 degrees C. Troponin and troponin C removed in this procedure were replaced. RLC exchange had little effect on active force production. X-ray diffraction showed normal structure in rigor after RLC exchange, but loss of axial and helical order in relaxation. In isolated myofibrils labeled cgRLC was confined to the regions of the sarcomere containing myosin heads. The ATR dipoles showed a preference for orientations perpendicular to the fiber axis, combined with limited nanosecond rotational motion, in all conditions studied. The perpendicular orientation preference was more marked in rigor than in either relaxation or active contraction. Stretching relaxed fibers to sarcomere length 4 microns to eliminate overlap between actin- and myosin-containing filaments had little effect on the orientation preference. There was no change in orientation preference when fibers were put into rigor at sarcomere length 4.0 microns. Qualitatively similar results were obtained with ATR-labeled rabbit skeletal RLC.  相似文献   

3.
In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads.  相似文献   

4.
Structural changes in myosin power many types of cell motility including muscle contraction. Tilting of the myosin light chain domain (LCD) seems to be the final step in transducing the energy of ATP hydrolysis, amplifying small structural changes near the ATP binding site into nanometer-scale motions of the filaments. Here we used polarized fluorescence measurements from bifunctional rhodamine probes attached at known orientations in the LCD to describe the distribution of orientations of the LCD in active contraction and rigor. We applied rapid length steps to perturb the orientations of the population of myosin heads that are attached to actin, and thereby characterized the motions of these force-bearing myosin heads. During active contraction, this population is a small fraction of the total. When the filaments slide in the shortening direction in active contraction, the long axis of LCD tilts towards its nucleotide-free orientation with no significant twisting around this axis. In contrast, filament sliding in rigor produces coordinated tilting and twisting motions.  相似文献   

5.
To study the orientation and dynamics of myosin, we measured fluorescence polarization of single molecules and ensembles of myosin decorating actin filaments. Engineered chicken gizzard regulatory light chain (RLC), labeled with bisiodoacetamidorhodamine at cysteine residues 100 and 108 or 104 and 115, was exchanged for endogenous RLC in rabbit skeletal muscle HMM or S1. AEDANS-labeled actin, fully decorated with labeled myosin fragment or a ratio of approximately 1:1000 labeled:unlabeled myosin fragment, was adhered to a quartz slide. Eight polarized fluorescence intensities were combined with the actin orientation from the AEDANS fluorescence to determine the axial angle (relative to actin), the azimuthal angle (around actin), and RLC mobility on the <10 ms timescale. Order parameters of the orientation distributions from heavily labeled filaments agree well with comparable measurements in muscle fibers, verifying the technique. Experiments with HMM provide sufficient angular resolution to detect two orientations corresponding to the two heads in rigor. Experiments with S1 show a single orientation intermediate to the two seen for HMM. The angles measured for HMM are consistent with heads bound on adjacent actin monomers of a filament, under strain, similar to predictions based on ensemble measurements made on muscle fibers with electron microscopy and spectroscopic experiments.  相似文献   

6.
In the absence of adenosine triphosphate, the head domains of myosin cross-bridges in muscle bind to actin filaments in a rigor conformation that is expected to mimic that following the working stroke during active contraction. We used x-ray interference between the two head arrays in opposite halves of each myosin filament to determine the rigor head conformation in single fibers from frog skeletal muscle. During isometric contraction (force T(0)), the interference effect splits the M3 x-ray reflection from the axial repeat of the heads into two peaks with relative intensity (higher angle/lower angle peak) 0.76. In demembranated fibers in rigor at low force (<0.05 T(0)), the relative intensity was 4.0, showing that the center of mass of the heads had moved 4.5 nm closer to the midpoint of the myosin filament. When rigor fibers were stretched, increasing the force to 0.55 T(0), the heads' center of mass moved back by 1.1-1.6 nm. These motions can be explained by tilting of the light chain domain of the head so that the mean angle between the Cys(707)-Lys(843) vector and the filament axis increases by approximately 36 degrees between isometric contraction and low-force rigor, and decreases by 7-10 degrees when the rigor fiber is stretched to 0.55 T(0).  相似文献   

7.
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin.  相似文献   

8.
The averaged structure of rigor cross-bridges in insect flight muscle is further revealed by three-dimensional reconstruction from 25-nm sections containing a single layer of thin filaments. These exhibit two thin filament orientations that differ by 60 degrees from each other and from myac layer filaments. Data from multiple tilt views (to +/- 60 degrees) was supplemented by data from thick sections (equivalent to 90 degrees tilts). In combination with the reconstruction from the myac layer (Taylor et al., 1989), the entire unit cell is reconstructed, giving the most complete view of in situ cross-bridges yet obtained. All our reconstructions show two classes of averaged rigor cross-bridges. Lead bridges have a triangular shape with leading edge angled at approximately 45 degrees and trailing edge angled at approximately 90 degrees to the filament axis. We propose that the lead bridge contains two myosin heads of differing conformation bound along one strand of F-actin. The lead bridge is associated with a region of the thin filament that is apparently untwisted. We suggest that the untwisting may reflect the distribution of strain between myosin and actin resulting from two-headed, single filament binding in the lead bridge. Rear bridges are oriented at approximately 90 degrees to the filament axis, and are smaller and more cylindrical, suggesting that they consist of single myosin heads. The rear bridge is associated with a region of apparently normal thin filament twist. We propose that differing myosin head angles and conformations consistently observed in rigor embody different stages of the power stroke which have been trapped by a temporal sequence of rigor cross-bridge formation under the constraints of the intact filament lattice.  相似文献   

9.
We have used electron paramagnetic resonance (EPR) spectroscopy to detect ATP- and calcium-induced changes in the structure of spin-labeled myosin heads in glycerinated rabbit psoas muscle fibers in key physiological states. The probe was a nitroxide iodoacetamide derivative attached selectively to myosin SH1 (Cys 707), the conventional EPR spectra of which have been shown to resolve several conformational states of the myosin ATPase cycle, on the basis of nanosecond rotational motion within the protein. Spectra were acquired in rigor and during the steady-state phases of relaxation and isometric contraction. Spectral components corresponding to specific conformational states and biochemical intermediates were detected and assigned by reference to EPR spectra of trapped kinetic intermediates. In the absence of ATP, all of the myosin heads were rigidly attached to the thin filament, and only a single conformation was detected, in which there was no sub-microsecond probe motion. In relaxation, the EPR spectrum resolved two conformations of the myosin head that are distinct from rigor. These structural states were virtually identical to those observed previously for isolated myosin and were assigned to the populations of the M*.ATP and M**.ADP.Pi states. During isometric contraction, the EPR spectrum resolves the same two conformations observed in relaxation, plus a small fraction (20-30%) of heads in the oriented actin-bound conformation that is observed in rigor. This rigor-like component is a calcium-dependent, actin-bound state that may represent force-generating cross-bridges. As the spin label is located near the nucleotide-binding pocket in a region proposed to be pivotal for large-scale force-generating structural changes in myosin, we propose that the observed spectroscopic changes indicate directly the key steps in energy transduction in the molecular motor of contracting muscle.  相似文献   

10.
Three-dimensional structure of the insect (Lethocerus) flight muscle M-band   总被引:2,自引:0,他引:2  
The oval myosin filament profiles in transverse sections through the M-band of Lethocerus flight muscle are arranged in one of three orientations 60 degrees apart and point along the 11 directions of the hexagonal filament lattice. Relative orientations are not systematically related to give a superlattice structure, but neither are the orientations arranged completely randomly. In fact there is a nearly random structure with a slight bias towards adjacent filaments being identically oriented. This form of M-band structure is explained in terms of interactions between quasi-equivalent M-bridges. Its implications with regard to myosin crossbridge arrangement depend on the rotational symmetry of the crossbridge helix. For 6-stranded helices, 60 degrees rotations have no noticeable effect. However, in the case of the more likely 4-stranded structure, our results show that the crossbridge origins in the insect flight muscle A-band would be highly disordered. This disorder must be accounted for in interpreting both the flared-X crossbridge interactions seen in transverse sections of rigor insect flight muscle and the beautiful X-ray diffraction patterns from the same preparation. It is likely that in rigor insect muscle, some flared-Xs have the two heads of single myosin molecules interacting with two different actin filaments, whereas other flared-Xs have both of the myosin heads in one molecule interacting with the same actin filament.  相似文献   

11.
A direct modeling approach was used to quantitatively interpret the two-dimensional x-ray diffraction patterns obtained from contracting mammalian skeletal muscle. The dependence of the calculated layer line intensities on the number of myosin heads bound to the thin filaments, on the conformation of these heads and on their mode of attachment to actin, was studied systematically. Results of modeling are compared to experimental data collected from permeabilized fibers from rabbit skeletal muscle contracting at 5°C and 30°C and developing low and high isometric tension, respectively. The results of the modeling show that: i), the intensity of the first actin layer line is independent of the tilt of the light chain domains of myosin heads and can be used as a measure of the fraction of myosin heads stereospecifically attached to actin; ii), during isometric contraction at near physiological temperature, the fraction of these heads is ∼40% and the light chain domains of the majority of them are more perpendicular to the filament axis than in rigor; and iii), at low temperature, when isometric tension is low, a majority of the attached myosin heads are bound to actin nonstereospecifically whereas at high temperature and tension they are bound stereospecifically.  相似文献   

12.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

13.
Calcium binding to thin filaments is a major element controlling active force generation in striated muscles. Recent evidence suggests that processes other than Ca2+ binding, such as phosphorylation of myosin regulatory light chain (RLC) also controls contraction of vertebrate striated muscle (Cooke, R. (2011) Biophys. Rev. 3, 33–45). Electron paramagnetic resonance (EPR) studies using nucleotide analog spin label probes showed that dephosphorylated myosin heads are highly ordered in the relaxed fibers and have very low ATPase activity. This ordered structure of myosin cross-bridges disappears with the phosphorylation of RLC (Stewart, M. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 430–435). The slower ATPase activity in the dephosporylated moiety has been defined as a new super-relaxed state (SRX). It can be observed in both skeletal and cardiac muscle fibers (Hooijman, P., Stewart, M. A., and Cooke, R. (2011) Biophys. J. 100, 1969–1976). Given the importance of the finding that suggests a novel pathway of regulation of skeletal muscle, we aim to examine the effects of phosphorylation on cross-bridge orientation and rotational motion. We find that: (i) relaxed cross-bridges, but not active ones, are statistically better ordered in muscle where the RLC is dephosporylated compared with phosphorylated RLC; (ii) relaxed phosphorylated and dephosphorylated cross-bridges rotate equally slowly; and (iii) active phosphorylated cross-bridges rotate considerably faster than dephosphorylated ones during isometric contraction but the duty cycle remained the same, suggesting that both phosphorylated and dephosphorylated muscles develop the same isometric tension at full Ca2+ saturation. A simple theory was developed to account for this fact.  相似文献   

14.
The orientation of the ELC region of myosin in skeletal muscle was determined by polarized fluorescence from ELC mutants in which pairs of introduced cysteines were cross-linked by BSR. The purified ELC-BSRs were exchanged for native ELC in demembranated fibers from rabbit psoas muscle using a trifluoperazine-based protocol that preserved fiber function. In the absence of MgATP (in rigor) the ELC orientation distribution was narrow; in terms of crystallographic structures of the myosin head, the LCD long axis linking heavy-chain residues 707 and 843 makes an angle (β) of 120-125° with the filament axis. This is ∼30° larger than the broader distribution determined previously from RLC probes, suggesting that, relative to crystallographic structures, the LCD is bent between its ELC and RLC regions in rigor muscle. The ELC orientation distribution in relaxed muscle had two broad peaks with β ∼70° and ∼110°, which may correspond to the two head regions of each myosin molecule, in contrast with the single broad distribution of the RLC region in relaxed muscle. During isometric contraction the ELC orientation distribution peaked at β ∼105°, similar to that determined previously for the RLC region.  相似文献   

15.
We have used electron paramagnetic resonance (EPR) to investigate the orientation, rotational motion, and actin-binding properties of rabbit psoas muscle cross-bridges in the presence of the nonhydrolyzable nucleotide analogue, 5'-adenylylimido-diphosphate (AMPPNP). This analogue is known to decrease muscle tension without affecting its stiffness, suggesting an attached cross-bridge state different from rigor. We spin-labeled the SH1 groups on myosin heads and performed conventional EPR to obtain high-resolution information about the orientational distribution, and saturation transfer EPR to measure microsecond rotational motion. At 4 degrees C and 100 mM ionic strength, we find that AMPPNP increases both the orientational disorder and the microsecond rotational motion of myosin heads. However, computer analysis of digitized spectra shows that no new population of probes is observed that does not match either rigor or relaxation in both orientation and motion. At 4 degrees C, under nearly saturating conditions of 16 mM AMPPNP (Kd = 3.0 mM, determined from competition between AMPPNP and an ADP spin label), 47.5 +/- 2.5% of myosin heads are dynamically disoriented (as in relaxation) without a significant decrease in rigor stiffness, whereas the remainder are rigidly oriented as in rigor. The oriented heads correspond to actin-attached heads in a ternary complex, and the disoriented heads correspond to detached heads, as indicated by EPR experiments with spin-labeled subfragment 1 (S1) that provide independent measurements of orientation and binding. We take these findings as evidence for a single-headed cross-bridge that is as stiff as the double-headed rigor cross-bridge. The data are consistent with a model in which, in the presence of saturating AMPPNP, one head of each cross-bridge binds actin about 10 times more weakly, whereas the remaining head binds at least 10 times more strongly, than extrinsic S1. Thus, although there is no evidence for heads being attached at nonrigor angles, the attached cross-bridge differs from that of rigor. The heterogeneous behavior of heads is probably due to steric effects of the filament lattice.  相似文献   

16.
The regulatory light chain (RLC) from chicken gizzard myosin was covalently modified on cysteine 108 with either the 5- or 6-isomer of iodoacetamidotetramethylrhodamine (IATR). Labeled RLCs were purified by fast protein liquid chromatography and characterized by reverse-phase high-performance liquid chromatography (HPLC), tryptic digestion, and electrospray mass spectrometry. Labeled RLCs were exchanged into the native myosin heads of single skinned fibers from rabbit psoas muscle, and the ATR dipole orientations were determined by fluorescence polarization. The 5- and 6-ATR dipoles had distinct orientations, and model orientational distributions suggest that they are more than 20 degrees apart in rigor. In the rigor-to-relaxed transition (sarcomere length 2.4 microm, 10 degrees C), the 5-ATR dipole became more perpendicular to the fiber axis, but the 6-ATR dipole became more parallel. This orientation change was absent at sarcomere length 4.0 microm, where overlap between myosin and actin filaments is abolished. When the temperature of relaxed fibers was raised to 30 degrees C, the 6-ATR dipoles became more parallel to the fiber axis and less ordered; when ionic strength was lowered from 160 mM to 20 mM (5 degrees C), the 6-ATR dipoles became more perpendicular to the fiber axis and more ordered. In active contraction (10 degrees C), the orientational distribution of the probe dipoles was similar but not identical to that in relaxation, and was not a linear combination of the orientational distributions in relaxation and rigor.  相似文献   

17.
S Ramachandran  D D Thomas 《Biochemistry》1999,38(28):9097-9104
We have used time-resolved phosphorescence anisotropy (TPA) to study the rotational dynamics of chicken gizzard regulatory light chain (RLC) bound to scallop adductor muscle myofibrils in key physiological states. Native RLC from scallop myofibrils was extracted and replaced completely with gizzard RLC labeled specifically at Cys 108 with erythrosin iodoacetamide (ErIA). The calcium sensitivity of the ATPase activity of the labeled myofibril preparation was quite similar to that of the native sample, indicating that the ErIA-labeled RLC is functionally bound to the myosin head. In rigor (in the absence of ATP, when all the myosin heads are rigidly bound to the thin filament), a slight decay was observed in the first few microseconds, followed by no change in the anisotropy. This indicates small-amplitude restricted motions of the RLC or the entire LC domain of myosin. Addition of calcium to rigor restricts these motions further. Relaxation with ATP (no Ca) causes a large decay in the anisotropy, indicating large-amplitude rotational motion with correlation times of 5-50 micros. Further addition of calcium, to induce contraction, resulted in a decrease in the rate and amplitude of anisotropy decay. In particular, there is clear evidence for a slow rotational motion with a correlation time of approximately 300 micros, which is not present either in rigor or relaxation. This indicates rotational motion that specifically correlates with force generation. The changes in the rotational dynamics of the light-chain domain in rigor, relaxation, and contraction support earlier work based on probes of the catalytic domain that muscle contraction is accompanied by a disorder-to-order transition of the myosin head. However, the motions of the LC domain are different from those of the catalytic domain, which indicates rotation of the two domains relative to each other.  相似文献   

18.
The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30 degrees C; approximately 60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution-the maximum entropy distribution-consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the "lever" axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70-80 degrees to the fiber axis, and the "hook" helix (Pro830-Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region.  相似文献   

19.
Using a combination of microelectrode measurements and high-power microscopy we have demonstrated that different Donnan potentials can be recorded from the A- and I-bands of glycerinated and chemically skinned muscles in rigor, so that the A-band fixed charge concentration exceeds the I-band fixed charge concentration in the rigor condition. In relaxation the two potentials, and therefore the two charge concentrations, are equal in the two bands. X-ray data are presented for relaxed and rigor rat semitendinosus muscle, chemically skinned, and actin and myosin filament charges are calculated under a variety of conditions. Our conclusions are that (a) the fixed (protein) charge is different in the A- and I-bands of striated muscle in the rigor state; (b) the fixed charges are equal in the A- and I-bands of relaxed muscle; (c) the largest charge change between relaxation and rigor is on the thick filament. This occurs whether or not the myosin heads are cross-linked to the thin filaments. (d) Possibly an event on the myosin molecule, the binding of ATP (or certain other ligands) causes a disseminated change that modifies the ion-binding capacity of the myosin rods, or part of them.  相似文献   

20.
Acanthamoeba myosin II has three phosphorylation sites clustered near the end of the tail of each of its two heavy chains (six phosphorylation sites/molecule). Myosin II has little or no actin-activated ATPase activity when four to six of these sites are phosphorylated. Maximal actin-activated ATPase activity is obtained when all six sites are dephosphorylated. Under assay conditions, both phosphorylated and dephosphorylated myosin II form bipolar filaments. Filaments of dephosphorylated myosin II have larger sedimentation coefficients than filaments of phosphorylated myosin II but this difference does not explain the difference in their actin-activated ATPase activities. Heteropolymers, formed by mixing soluble dephosphorylated and phosphorylated myosins and then diluting the mixture into low ionic strength buffer containing MgCl2, have sedimentation coefficients close to those of the homopolymer of phosphorylated myosin. The actin-activated ATPase activities of heteropolymers are, under most conditions, lower than the equivalent mixtures of homopolymers of dephosphorylated and phosphorylated myosins. It is concluded, therefore, that the phosphorylation of myosin tails regulates the actin-activated ATPase activity of Acanthamoeba myosin II by affecting the myosin filament as a whole rather than specifically affecting the heads of the phosphorylated myosin molecules only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号