首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
T. Peterson 《Genetics》1990,126(2):469-476
  相似文献   

2.
3.
Ac Induces Homologous Recombination at the Maize P Locus   总被引:4,自引:0,他引:4       下载免费PDF全文
P. Athma  T. Peterson 《Genetics》1991,128(1):163-173
The maize P gene conditions red phlobaphene pigmentation to the pericarp and cob. Starting from two unstable P alleles which carry insertions of the transposable element Ac, we have derived 51 P null alleles; 47 of the 51 null alleles have a 17-kb deletion which removes the 4.5-kb Ac element and 12.5 kb of P sequences flanking both sides of Ac. The deletion endpoints lie within two 5.2-kb homologous direct repeats which flank the P gene. A P allele which contains the direct repeats, but does not have an Ac insertion between the direct repeats, shows very little sporophytic or gametophytic instability. The apparent frequency of sporophytic mutations was not increased when Ac was introduced in trans. Southern analysis of DNA prepared from the pericarp tissue demonstrates that the deletions can occur premeiotically, in the somatic cells during development of the pericarp. Evidence is presented that the deletions occurred by homologous recombination between the two direct repeats, and that the presence of an Ac element at the P locus is associated with the recombination/deletion. These results add another aspect to the spectrum of activities of Ac: the destabilization of flanking direct repeat sequences.  相似文献   

4.
P. Athma  E. Grotewold    T. Peterson 《Genetics》1992,131(1):199-209
The P-rr allele of the maize P gene regulates the synthesis of pigments derived from flavan-4-ol in the pericarp, cob glumes and other floral organs. We characterized 21 P alleles derived by intragenic transposition of Ac from three known positions. Ac transpositions can occur in either direction in the P gene, and with no apparent minimum distance: in one case Ac transposed just 6 bp from its original insertion site. However, the distribution of transposed Ac elements was markedly nonrandom: of 19 transposed Ac elements derived from a single Ac donor, 15 were inserted in a 1.1-kb region at the 5' end of P, while none had inserted in an adjacent 3.2-kb intronic region. All of the Ac insertions affect both pericarp and cob glume pigmentation, providing further evidence that the P-rr allele contains a single gene required for both pericarp and cob glume pigmentation. The distribution of the inserted Ac elements and the phenotype conditioned by each allele suggests a structure of P-rr which is similar to that previously determined molecularly. Possible explanations for the nonrandom distribution of transposed Ac elements are discussed.  相似文献   

5.
Genome rearrangements by nonlinear transposons in maize.   总被引:8,自引:0,他引:8  
J Zhang  T Peterson 《Genetics》1999,153(3):1403-1410
Transposable elements have long been considered as potential agents of large-scale genome reorganization by virtue of their ability to induce chromosomal rearrangements such as deletions, duplications, inversions, and reciprocal translocations. Previous researchers have shown that particular configurations of transposon termini can induce chromosome rearrangements at high frequencies. Here, we have analyzed chromosomal rearrangements derived from an unstable allele of the maize P1 (pericarp color) gene. The progenitor allele contains both a full-length Ac (Activator) transposable element and an Ac terminal fragment termed fAc (fractured Ac) inserted in the second intron of the P1-rr gene. Two rearranged alleles were derived from a classical maize ear twinned sector and were found to contain a large inverted duplication and a corresponding deficiency. The sequences at the junctions of the rearrangement breakpoints indicate that the duplication and deletion structures were produced by a single transposition event involving Ac and fAc termini located on sister chromatids. Because the transposition process we describe involves transposon ends located on different DNA molecules, it is termed nonlinear transposition (NLT). NLT can rapidly break and rejoin chromosomes and thus could have played an important role in generating structural heterogeneity during genome evolution.  相似文献   

6.
Yu C  Zhang J  Peterson T 《Genetics》2011,188(1):59-67
Alternative transposition can induce genome rearrangements, including deletions, inverted duplications, inversions, and translocations. To investigate the types and frequency of the rearrangements elicited by a pair of reversed Ac/Ds termini, we isolated and analyzed 100 new mutant alleles derived from two parental alleles that both contain an intact Ac and a fractured Ac (fAc) structure at the maize p1 locus. Mutants were characterized by PCR and sequencing; the results show that nearly 90% (89/100) of the mutant alleles represent structural rearrangements including deletions, inversions, translocations, or rearrangement of the intertransposon sequence (ITS). Among 37 deletions obtained, 20 extend into the external flanking sequences, while 17 delete portions of the intertransposon sequence. Interestingly, one deletion allele that contains only a single nucleotide between the retained Ac and fAc termini is not competent for further alternative transposition events. We propose a new model for the formation of intertransposon deletions through insertion of reversed transposon termini into sister-chromatid sequences. These results document the types and frequencies of genome rearrangements induced by alternative transposition of reversed Ac/Ds termini in maize.  相似文献   

7.
8.
9.
The maize Activator (Ac)/Dissociation (Ds) transposable element system has been used in a variety of plants for insertional mutagenesis. Ac/Ds elements can also generate genome rearrangements via alternative transposition reactions which involve the termini of closely linked transposons. Here, we introduced a transgene containing reverse-oriented Ac/Ds termini together with an Ac transposase gene into rice (Oryza sativa ssp. japonica cv. Nipponbare). Among the transgenic progeny, we identified and characterized 25 independent genome rearrangements at three different chromosomal loci. The rearrangements include chromosomal deletions and inversions and one translocation. Most of the deletions occurred within the T-DNA region, but two cases showed the loss of 72 kilobase pairs (kb) and 79 kb of rice genomic DNA flanking the transgene. In addition to deletions, we obtained chromosomal inversions ranging in size from less than 10 kb (within the transgene DNA) to over 1 million base pairs (Mb). For 11 inversions, we cloned and sequenced both inversion breakpoints; in all 11 cases, the inversion junctions contained the typical 8 base pairs (bp) Ac/Ds target site duplications, confirming their origin as transposition products. Together, our results indicate that alternative Ac/Ds transposition can be an efficient tool for functional genomics and chromosomal manipulation in rice.  相似文献   

10.
M. Alleman  J. L. Kermicle 《Genetics》1993,135(1):189-203
The R gene regulates the timing and tissue-specificity of anthocyanin deposition during maize development. The Ac/Ds system of transposable elements was used to induce insertional mutants of the R-sc:124 allele during two cycles of mutagenesis. Of 43 unstable, spotted-aleurone mutants generated, 42 contain inserts of the Ds6 transposable element differing only in the position and orientation of the element. The remaining mutant, r-sc:m1, contained an insert of a Ds element of the approximate size of the Ds1 transposable element. The patterns of somatic variegation of these mutants, resulting from excision of Ds, define a spectrum of phenotypes ranging from sparse to dense variegation. The sparsely variegated mutants produce few germinal revertants but relatively many stable null derivative alleles; densely variegated mutants produce many germinal revertants and few stable null derivatives. Molecular analysis shows that the sparsely variegated alleles are caused by Ds6 insertions in protein coding regions of R-sc:124 whereas the densely variegated mutants result from insertions in introns or in flanking regions of the gene. The excision rate of Ds6 from R, estimated as the proportion of R genomic DNA restriction fragments lacking the element, was uniform regardless of position, orientation or whether the element was inserted in R-sc:124 or another R allele. The excision rate was greater, however, for the mutable alleles involving the Ds element from r-sc:m1. These data indicate that, although the excision rates are uniform for a given Ds element, the somatic and germinal mutability patterns of alleles associated with that element vary widely and depend primarily on the position of the transposable element within coding or noncoding regions of the gene.  相似文献   

11.
12.
Previous studies have shown that pairs of closely-linked Ac/Ds transposable elements can induce various chromosomal rearrangements in plant genomes. To study chromosomal rearrangements in rice, we isolated a line (OsRLG5-161) that contains two inversely-oriented Ds insertions in OsRLG5 (Oryza sativa Receptor like kinase Gene 5). Among approximately 300 plants regenerated from OsRLG5-161 heterozygous seeds, 107 contained rearrangements including deletions, duplications and inversions of various sizes. Most rearrangements were induced by previously identified alternative transposition mechanism. Furthermore, we also detected a new class of rearrangements that contain juxtaposed inversions and deletions on the same chromosome. We propose that these novel alleles were generated by a previously unreported type of alternative transposition reactions involving the 5' and 3' termini of two inversely-oriented Ds elements located on the same chromatid. Finally, 11% of rearrangements contained inversions resulting from homologous recombination between the two inverted Ds elements in OsRLG5-161. The high frequency inheritance and great variety of rearrangements obtained suggests that the rice regeneration system results in a burst of transposition activity and a relaxation of the controls which normally limit the transposition competence of individual Ds termini. Together, these results demonstrate a greatly enlarged potential of the Ac/Ds system for plant chromosome engineering.  相似文献   

13.
Analysis of extrachromosomal Ac/Ds transposable elements   总被引:3,自引:0,他引:3  
Gorbunova V  Levy AA 《Genetics》2000,155(1):349-359
The mechanism of transposition of the maize Ac/Ds elements is not well understood. The true transposition intermediates are not known and it has not been possible to distinguish between excision models involving 8-bp staggered cuts or 1-bp staggered cuts followed by hairpin formation. In this work, we have analyzed extrachromosomal excision products to gain insight into the excision mechanism. Plasmid rescue was used to demonstrate that Ds excision is associated with the formation of circular molecules. In addition, we present evidence for the formation of linear extrachromosomal species during Ds excision. Sequences found at the termini of circular and linear elements showed a broad range of nucleotide additions or deletions, suggesting that these species are not true intermediates. Additional nucleotides adjacent to the termini in extrachromosomal elements were compared to the sequence of the original donor site. This analysis showed that: (1) the first nucleotide adjacent to the transposon end was significantly more similar to the first nucleotide flanking the element in the donor site than to a random sequence and (2) the second and farther nucleotides did not resemble the donor site. The implications of these findings for excision models are discussed.  相似文献   

14.
15.
16.
利用本实验室构建的转Ac(Ac TPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ae×Ds的杂交组合354个。检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性。结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%。检测到T-DNA可插入到编码蛋白的基因中。在Ac×Ds的F2代中,Ds因子的转座频率为22.7%。对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制——转座和小完全切离等现象。获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录。探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略。  相似文献   

17.
利用本实验室构建的转Ac(AcTPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ac×Ds的杂交组合354个.检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性.结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%.检测到T-DNA可插入到编码蛋白的基因中.在Ac×Ds的F2代中,Ds因子的转座频率为22.7%.对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制--转座和不完全切离等现象.获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录.探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略.  相似文献   

18.
19.
The transposable Dissociation (Ds) element of maize was first discovered as a site of high-frequency chromosome breakage. Because both Ds-mediated breakage and transposition require the presence of the Activator (Ac) element, it has been suggested that chromosome breakage may be the outcome of an aberrant transposition event. This idea is consistent with the finding that only complex structures containing multiple Ds or Ac and Ds elements have been correlated with chromosome breakage. In this report, we describe two chromosome-breaking maize alleles that contain pairs of closely linked but separate Ds elements inserted at the Waxy locus. A polymerase chain reaction assay was utilized to isolate intermediates in the breakage process. The DNA sequence of these intermediates reveals deletions and base pair changes consistent with transposon footprints that may represent the junctions between fused sister chromatids. These results provide direct molecular evidence that chromosome breakage is the result of aberrant transposition events.  相似文献   

20.
用水稻愈伤组织比较了Ac启动子、35S启动子与Ubi启动子控制下Ac转座酶基因(Ts)的表达对Ds因子切离频率的影响。结果表明Ubi启动子与Ac转座酶编码区嵌合基因(Ubipro-Ts)反式激活Ds因子的切离频率最高,达到了72.9%。通过杂交将Ubipro-Ts基因导入Ds因子转化植株,得到9株Ubipro-Ts基因与Ds因子共存的F1代杂交水稻植株,其中有8株Ds因子发生了切离。用Inverse-PCR的方法从其中一株杂交植株中克隆到Ds因子的旁邻序列,其DNA顺序与亲本中Ds因子原插入位点的序列不同,表明Ds因子转座到了新的基因组位点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号