首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been widely documented that the nucleocapsid protein p12 (NC) of Rous sarcoma virus (RSV) has a role in the encapsidation and maturation of the virus genomic RNA during particle formation, and particularly important appear to be the Cys-His motifs of this protein. Since some retroviruses only have one such motif, we have investigated the significance of the two distinct Cys-His motifs of RSV NC. The analysis of the phenotype of virus NC mutants with precise rearrangements or duplications of the motifs highlights the following features. (i) The two motifs are not functionally equivalent. (ii) The order and number of Cys-His motifs are less important for RSV NC than the presence of two distinct motifs for both the encapsidation of virus genomic RNA and maintenance of the integrity of the RNA after particle formation. (iii) The proximal motif has a distinct function in the virus replication cycle other than RNA encapsidation and dimerization. (iv) The presence of three Cys-His motifs reduces virus infectivity and leads to high-frequency deletion events (of one of the motifs) after infection: the resulting RNA species encode a wild type-like NC protein restoring full infectivity to the progeny virus particles. Additionally, the data suggest that this occurs only after infection. The deletion probably arises by intramolecular displacement of the replication complex between repeat sequences.  相似文献   

2.
Human T-cell leukemia virus type 1 (HTLV-1) has two late domain (LD) motifs, PPPY and PTAP, which are important for viral budding. Mutations in the PPPY motif are more deleterious for viral release than changes in the PTAP motif. Several reports have shown that the interaction of PPPY with the WW domains of a Nedd4 (neuronal precursor cell-expressed developmentally down-regulated-4) family ubiquitin ligase (UL) is a critical event in virus release. We tested nine members of the Nedd4 family ULs and found that ITCH is the main contributor to HTLV-1 budding. ITCH overexpression strongly inhibited release and infectivity of wild-type (wt) HTLV-1, but rescued the release of infectious virions with certain mutations in the PPPY motif. Electron microscopy showed either fewer or misshapen virus particles when wt HTLV-1 was produced in the presence of overexpressed ITCH, whereas mutants with changes in the PPPY motif yielded normal looking particles at wt level. The other ULs had significantly weaker or no effects on HTLV-1 release and infectivity except for SMURF-1, which caused enhanced release of wt and all PPPY(-) mutant particles. These particles were poorly infectious and showed abnormal morphology by electron microscopy. Budding and infectivity defects due to overexpression of ITCH and SMURF-1 were correlated with higher than normal ubiquitination of Gag. Only silencing of ITCH, but not of WWP1, WWP2, and Nedd4, resulted in a reduction of HTLV-1 budding from 293T cells. The binding efficiencies between the HTLV-1 LD and WW domains of different ULs as measured by mammalian two-hybrid interaction did not correlate with the strength of their effect on HTLV-1 budding.  相似文献   

3.
The process of retroviral RNA encapsidation involves interaction between trans-acting viral proteins and cis-acting RNA elements. The encapsidation signal on human immunodeficiency virus type 1 (HIV-1) RNA is a multipartite structure composed of functional stem-loop structures. The nucleocapsid (NC) domain of the Gag polyprotein precursor contains two copies of a Cys-His box motif that have been demonstrated to be important in RNA encapsidation. To further characterize the role of the Cys-His boxes of the HIV-1 NC protein in RNA encapsidation, the relative efficiency of RNA encapsidation for virus particles that contained mutations within the Cys-His boxes was measured. Mutations that disrupted the first Cys-His box of the NC protein resulted in virus particles that encapsidated genomic RNA less efficiently and subgenomic RNA more efficiently than did wild-type virus. Mutations within the second Cys-His box did not significantly affect RNA encapsidation. In addition, a full complement of wild-type NC protein in virus particles is not required for efficient RNA encapsidation or virus replication. Finally, both Cys-His boxes of the NC protein play additional roles in virus replication.  相似文献   

4.
We constructed ten mutants of simian immunodeficiency virus isolated from African green monkey (SIVAGM), and nine mutants of human immunodeficiency virus type 2 (HIV-2) in vitro. Their infectivity, cytopathogenicity, transactivation potential, virus RNA, and protein synthesis were examined by transfection and infection experiments. Mutations in three structural (gag, pol, env) and two regulator (tat, rev) genes abolished the infectivity of both viruses, but vpx, vpr (HIV-2), and nef were dispensable and mutant viruses were indistinguishable phenotypically from wild type virus. A vif mutant of HIV-2 showed poor infectivity in cell-free condition, whereas SIVAGM mutants grew equally well with wild type virus. In transient transfection assays, rev mutants derived from both viruses produced mainly small mRNA species and no detectable virus proteins and particles. Transactivation potential of tat mutants originated from both viruses was about three- to ten-fold less than that of respective wild type DNAs, generating small amounts of virus.  相似文献   

5.
The transmembrane (TM) domains of hepatitis C virus (HCV) envelope glycoproteins E1 and E2 have been shown to play multiple roles during the biogenesis of the E1E2 heterodimer. By using alanine scanning insertion mutagenesis within the TM domains of HCV envelope glycoproteins, we have previously shown that the central regions of these domains as well as the N-terminal part of the TM domain of E1 are involved in heterodimerization. Here, we used a tryptophan replacement scan of these regions to identify individual residues that participate in those interactions. Our mutagenesis study identified at least four residues involved in heterodimerization: Gly 354, Gly 358, Lys 370, and Asp 728. Interestingly, Gly 354 and Gly 358 belong to a GXXXG oligomerization motif. Our tryptophan mutants were also used to generate retrovirus-based, HCV-pseudotyped particles (HCVpp) in order to analyze the effects of these mutations on virus entry. Surprisingly, two mutants consistently displayed higher infectivity compared to that of the wild type. In contrast, HCVpp infectivity was strongly affected for many mutants, despite normal E1E2 heterodimerization and normal levels of incorporation of HCV glycoproteins into HCVpp. The characterization of some of these HCVpp mutants in the recently developed in vitro fusion assay using fluorescent-labeled liposomes indicated that mutations reducing HCVpp infectivity without altering E1E2 heterodimerization affected the fusion properties of HCV envelope glycoproteins. In conclusion, this mutational analysis identified residues involved in E1E2 heterodimerization and revealed that the TM domains of HCV envelope glycoproteins play a major role in the fusion properties of these proteins.  相似文献   

6.
7.
The 5' nontranslated region (NTR) of pestiviruses functions as an internal ribosome entry site (IRES) that mediates cap-independent translation of the viral polyprotein and probably contains additional cis-acting RNA signals involved in crucial processes of the viral life cycle. Computer modeling suggests that the 5'-terminal 75 nucleotides preceding the IRES element form two stable hairpins, Ia and Ib. Spontaneous and engineered mutations located in the genomic region comprising Ia and Ib were characterized by using infectious cDNA clones of bovine viral diarrhea virus. Spontaneous 5' NTR mutations carrying between 9 and 26 A residues within the loop region of Ib had no detectable influence on specific infectivity and virus growth properties. After tissue culture passages, multiple insertions and deletions of A residues occurred rapidly. In contrast, an engineered mutant carrying 5 A residues within the Ib loop was genetically stable during 10 tissue culture passages. This virus was used as starting material to generate a number of additional mutants. The analyses show that (i) deletion of the entire Ib loop region resulted in almost complete loss of infectivity that was rapidly restored during passages in cell culture by insertions of variable numbers of A residues; (ii) mutations within the 5'-terminal 4 nucleotides of the genomic RNA severely impaired virus replication; passaging of the supernatants obtained after transfection resulted in the emergence of efficiently replicating mutants that had regained the conserved 5'-terminal sequence; (iii) provided the conserved sequence motif 5'-GUAU was retained at the 5' end of the genomic RNA, substitutions and deletions of various parts of hairpin Ia or deletion of all of Ia and part of Ib were found to support replication, but to a lower degree than the parent virus. Restriction of specific infectivity and virus growth of the 5' NTR mutants correlated with reduced amounts of accumulated viral RNAs.  相似文献   

8.
The RNA-dependent RNA polymerase of influenza A virus is composed of three subunits that together synthesize all viral mRNAs and also replicate the viral genomic RNA segments (vRNAs) through intermediates known as cRNAs. Here we describe functional characterization of 16 site-directed mutants of one polymerase subunit, termed PA. In accord with earlier studies, these mutants exhibited diverse, mainly quantitative impairments in expressing one or more classes of viral RNA, with associated infectivity defects of varying severity. One PA mutant, however, targeting residues 507 and 508, caused only modest perturbations of RNA expression yet completely eliminated the formation of plaque-forming virus. Polymerases incorporating this mutant, designated J10, proved capable of synthesizing translationally active mRNAs and of replicating diverse cRNA or vRNA templates at levels compatible with viral infectivity. Both the mutant protein and its RNA products were appropriately localized in the cytoplasm, where influenza virus assembly occurs. Nevertheless, J10 failed to generate infectious particles from cells in a plasmid-based influenza virus assembly assay, and hemagglutinating material from the supernatants of such cells contained little or no nuclease-resistant genomic RNA. These findings suggest that PA has a previously unrecognized role in assembly or release of influenza virus virions, perhaps influencing core structure or the packaging of vRNAs or other essential components into nascent influenza virus particles.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein contains two copies of a sequence motif, the cysteine-histidine box, that is conserved among retroviruses. To identify the functionally relevant positions of a cysteine-histidine box, each amino acid in the proximal copy of the motif was individually substituted by site-directed mutagenesis. Mutations at 5 of 14 positions abolished virus replication and reduced the viral RNA content of mutant particles to between 10 and 20% of parental levels. Mutations at other positions had either no or only a minor effect on virus replication and virion RNA content. In vitro binding of RNA to bacterially expressed mutant Pr55gag polyprotein correlated well with the effects of the mutations on particle-associated viral RNA levels. The two different copies of the motif in the HIV-1 nucleocapsid protein are not functionally equivalent, since the conversion of the proximal motif to an exact copy of the distal motif results in a defect in virus replication and a reduction in the viral RNA content of mutant particles. The simultaneous substitution of functionally relevant positions in both motifs led to a significant decline in gag protein export, indicating that the nucleocapsid domain of the gag precursor is also required for efficient assembly or release of the virion.  相似文献   

10.
11.
Nonoverlapping deletions that eliminated the 5' (HIV-1US/603del), middle (HIV-1U5/206del), and 3' (HIV-1U5/604del) thirds of the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) were studied for their effects on virus replication (transient transfection of HeLa cells) and infectivity (T-cell lines and peripheral blood mononuclear cells). All three mutants exhibited a wild-type phenotype in directing the production and release of virus particles from transfected HeLa cells. In infectivity assays, HIV-1U5/206del was usually indistinguishable from wild-type virus whereas HIV-1U%/603del was unable to infect human peripheral blood mononuclear cells or MT4 and CEM cells. Investigations of HIV-1U5/603del particles revealed a packaging defect resulting in a 10-fold reduction of encapsidated genomic RNA. The HIV-1U5/604del mutant either was noninfectious or exhibited delayed infection kinetics, depending on the cell type and multiplicity of infection. Quantitative competitive PCR indicated that HIV-1U5/604del synthesized normal amounts of viral DNA in newly infected cells. During the course of a long-term infectivity assay, a revertant of the HIV-1U5/604del mutant that displayed rapid infection kinetics emerged. Nucleotide sequence analysis indicated that the original 26-nucleotide deletion present in HIV-1U5/604del had been extended an additional 19 nucleotides in the revertant virus. Characterization of the HIV-1U5/604del mutant LTR in in vitro integration reactions revealed defective 3' processing and strand transfer activities that were partially restored when the revertant LTR substrate was used, suggesting that the reversion corrected a similar defect in the mutant virus.  相似文献   

12.
13.
To study the function(s) of the Rous sarcoma virus nucleic acid-binding protein p12, we constructed mutants by using two restriction sites in the p12 proviral coding sequence of the Prague C strain to insert KpnI synthetic linkers. The two restriction sites are in the same reading frame, which allowed us to construct a deletion mutant lacking the two conserved Cys-His regions and a duplication mutant containing three intact Cys-His boxes. These mutant DNAs were transfected into chicken embryo fibroblasts, and the viral particles produced in a transient assay were characterized biochemically and for infectivity. Our results indicate that the Rous sarcoma virus nucleic acid-binding protein p12 is necessary for genomic RNA packaging but not for particle assembly and is implicated in the formation of a stable 70S dimeric RNA. Moreover, the fact that one mutant was apparently able to package normal 70S RNA but was not infectious suggests a role for p12 during the infection process.  相似文献   

14.
The final stage of poliovirus assembly is characterized by a cleavage of the capsid precursor protein VP0 into VP2 and VP4. This cleavage is thought to be autocatalytic and dependent on RNA encapsidation. Analysis of the poliovirus empty capsid structure has led to a mechanistic model for VP0 cleavage involving a conserved histidine residue that is present in the surrounding environment of the VP0 cleavage site. Histidine 195 of VP2 (2195H) is hypothesized to activate local water molecules, thus initiating a nucleophilic attack at the scissile bond. To test this hypothesis, 2195H mutants were constructed and their phenotypes were characterized. Consistent with the requirement of VP0 cleavage for poliovirus infectivity, all 2195H mutants were nonviable upon introduction of the mutant genomes into HeLa cells. Replacement of 2195H with threonine or arginine resulted in the assembly of a highly unstable 150S virus particle. Further analyses showed that these particles contain genomic RNA and uncleaved VP0, criteria associated with the provirion assembly intermediate. These data support the involvement of 2195H in mediating VP0 cleavage during the final stages of virus assembly.  相似文献   

15.
Three late assembly domain consensus motifs, namely PTAP, PPPY, and LYPXL, have been identified in different retroviruses. They have been shown to interact with the cellular proteins TSG101, Nedd4, and AP2 or AIP, respectively. Human T-cell leukemia virus type 1 (HTLV-1) has a PPPY and a PTAP motif, separated by two amino acids, located at the end of MA, but only the PPPY motif is conserved in the deltaretrovirus group. Like other retroviral peptides carrying the late motif, MA is mono- or di-ubiquitinated. A mutational analysis showed that 90% of PPPY mutant particles were retained in the cell compared to 15% for the wild-type virus. Mutations of the PTAP motif resulted in a 20% decrease in particle release. In single-cycle infectivity assays, the infectious titers of late motif mutants correlated with the amounts of released virus, as determined by an enzyme-linked immunosorbent assay. We observed binding of MA to the WW domains of the Nedd4 family member WWP1 but not to the amino-terminal ubiquitin E2 variant domain of TSG101 in mammalian two-hybrid analyses. The binding to WWP1 was eliminated when the PPPY motif was mutated. However, MA showed binding to TSG101 in the yeast two-hybrid system that was dependent on an intact PTAP motif. A dominant-negative (DN) mutant of WWP1 could inhibit budding of the intact HTLV-1 virus. In contrast, DN TSG101 only affected the release of virus-like particles encoded by Gag expression plasmids. Electron and fluorescent microscopy showed that Gag accumulates in large patches in the membranes of cells expressing viruses with PPPY mutations. Very few tethered immature particles could be detected in these samples, suggesting that budding is impaired at an earlier step than in other retroviruses.  相似文献   

16.
The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or "late domains" involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.  相似文献   

17.
18.
All retroviral nucleocapsid (NC) proteins, except those of spumaretroviruses, contain one or two copies of the conserved sequence motif C-X2-C-X4-H-X4-C. The conserved cysteine and histidine residues coordinate a zinc ion in each such motif. Rice et al. (W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buckheit, Jr., D. Clanton, M. Bu, L. Graham, C. A. Schaeffer, J. A. Turpin, J. Domagala, R. Gogliotti, J. P. Bader, S. M. Halliday, L. Coren, R. C. Sowder II, L. 0. Arthur, and L. E. Henderson, Science 270:1194-1197, 1995) have described a series of compounds which inactivate human immunodeficiency virus type 1 (HIV-1) particles and oxidize the cysteine thiolates in the NC zinc finger. We have characterized the effects of three such compounds on Moloney murine leukemia virus (MuLV). We find that, as with HIV-1, the compounds inactivate cell-free MuLV particles and induce disulfide cross-linking of NC in these particles. The killed MuLV particles were found to be incapable of synthesizing full-length viral DNA upon infection of a new host cell. When MuLV particles are synthesized in the presence of one of these compounds, the normal maturational cleavage of the Gag polyprotein does not occur. The compounds have no effect on the infectivity of human foamy virus, a spumaretrovirus lacking zinc fingers in its NC protein. The resistance of foamy virus supports the hypothesis that the zinc fingers are the targets for inactivation of MuLV and HIV- I by the compounds. The absolute conservation of the zinc finger motif among oncoretroviruses and lentiviruses and the lethality of all known mutations altering the zinc-binding residues suggest that only the normal, wild-type structure can efficiently perform all of its functions. This possibility would make the zinc finger an ideal target for antiretroviral agents.  相似文献   

19.
A unique feature of retroviruses is the packaging of two copies of their genome, noncovalently linked at their 5' ends. In vitro, dimerization of human immunodeficiency virus type 2 (HIV-2) RNA occurs by interaction of a self-complementary sequence exposed in the loop of stem-loop 1 (SL-1), also termed the dimer initiation site (DIS). However, in virions, HIV-2 genome dimerization does not depend on the DIS. Instead, a palindrome located within the packaging signal (Psi) is the essential motif for genome dimerization. We reported previously that a mutation within Psi decreasing genome dimerization and packaging also resulted in a reduced proportion of mature particles (A. L'Hernault, J. S. Greatorex, R. A. Crowther, and A. M. Lever, Retrovirology 4:90, 2007). In this study, we investigated further the relationship between HIV-2 genome dimerization, particle maturation, and infectivity by using a series of targeted mutations in SL-1. Our results show that disruption of a purine-rich ((392)-GGAG-(395)) motif within Psi causes a severe reduction in genome dimerization and a replication defect. Maintaining the extended SL-1 structure in combination with the (392)-GGAG-(395) motif enhanced packaging. Unlike that of HIV-1, which can replicate despite mutation of the DIS, HIV-2 replication depends critically on genome dimerization rather than just packaging efficiency. Gag processing was altered in the HIV-2 dimerization mutants, resulting in the accumulation of the MA-CA-p2 processing intermediate and suggesting a link between genome dimerization and particle assembly. Analysis of revertant SL-1 mutant viruses revealed that a compensatory mutation in matrix (70TI) could rescue viral replication and partially restore genome dimerization and Gag processing. Our results are consistent with interdependence between HIV-2 RNA dimerization and the correct proteolytic cleavage of the Gag polyprotein.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) contains two copies of genomic RNA that are noncovalently linked via a palindrome sequence within the dimer initiation site (DIS) stem-loop. In contrast to the current paradigm that the DIS stem or stem-loop is critical for HIV-1 infectivity, which arose from studies using T-cell lines, we demonstrate here that HIV-1 mutants with deletions in the DIS stem-loop are replication competent in peripheral blood mononuclear cells (PBMCs). The DIS mutants contained either the wild-type (5'GCGCGC3') or an arbitrary (5'ACGCGT3') palindrome sequence in place of the 39-nucleotide DIS stem-loop (NL(CGCGCG) and NL(ACGCGT)). These DIS mutants were replication defective in SupT1 cells, concurring with the current model in which DIS mutants are replication defective in T-cell lines. All of the HIV-1 DIS mutants were replication competent in PBMCs over a 40-day infection period and had retained their respective DIS mutations at 40 days postinfection. Although the stability of the virion RNA dimer was not affected by our DIS mutations, the RNA dimers exhibited a diffuse migration profile when compared to the wild type. No defect in protein processing of the Gag and GagProPol precursor proteins was found in the DIS mutants. Our data provide direct evidence that the DIS stem-loop is dispensable for viral replication in PBMCs and that the requirement of the DIS stem-loop in HIV-1 replication is cell type dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号