首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Bovine viral diarrhea virus (BVDV), a Pestivirus member of the Flaviviridae family, has a positive-stranded RNA genome which consists of a single open reading frame (ORF) and untranslated regions (UTRs) at the 5' and 3' ends. The 5' UTR harbors extensive RNA structure motifs; most of them were shown to contribute to an internal ribosomal entry site (IRES), which mediates cap-independent translation of the ORF. The extreme 5'-terminal region of the BVDV genome had so far been believed not to be required for IRES function. By structure probing techniques, we initially verified the existence of a computer-predicted stem-loop motif at the 5' end of the viral genome (hairpin Ia) as well as at the 3' end of the complementary negative-strand replication intermediate [termed hairpin Ia (-)]. While the stem of this structure is mainly constituted of nucleotides that are conserved among pestiviruses, the loop region is predominantly composed of variable residues. Taking a reverse genetics approach to a subgenomic BVDV replicon RNA (DI9c) which could be equally employed in a translation as well as replication assay system based on BHK-21 cells, we obtained the following results. (i) Proper folding of the Ia stem was found to be crucial for efficient translation. Thus, in the context of an authentic replication-competent viral RNA, the 5'-terminal motif operates apparently as an integral functional part of the ribosome entry. (ii) An intact loop structure and a stretch of nucleotide residues that constitute a portion of the stem of the Ia or the Ia (-) motif, respectively, were defined to represent important determinants of the RNA replication pathway. (iii) Formation of the stem structure of the Ia (-) motif was determined to be not critical for RNA replication. In summary, our findings affirmed that the 5'-terminal region of the BVDV genome encodes a bifunctional secondary structure motif which may enable the viral RNA to switch from the translation to the replicative cycle and vice versa.  相似文献   

2.
Pestiviruses, such as bovine viral diarrhea virus (BVDV), share many similarities with hepatitis C virus (HCV) yet are more amenable to virologic and genetic analysis. For both BVDV and HCV, translation is initiated via an internal ribosome entry site (IRES). Besides IRES function, the viral 5' nontranslated regions (NTRs) may also contain cis-acting RNA elements important for viral replication. A series of chimeric RNAs were used to examine the function of the BVDV 5' NTR. Our results show that: (1) the HCV and the encephalomyocarditis virus (EMCV) IRES element can functionally replace that of BVDV; (2) two 5' terminal hairpins in BVDV genomic RNA are important for efficient replication; (3) replacement of the entire BVDV 5' NTR with those of HCV or EMCV leads to severely impaired replication; (4) such replacement chimeras are unstable and efficiently replicating pseudorevertants arise; (5) pseudorevertant mutations involve deletion of 5' sequences and/or acquisition of novel 5' sequences such that the 5' terminal 3-4 bases of BVDV genome RNA are restored. Besides providing new insight into functional elements in the BVDV 5' NTR, these chimeras may prove useful as pestivirus vaccines and for screening and evaluation of anti-HCV IRES antivirals.  相似文献   

3.
The 3' nontranslated region (NTR) of the pestivirus Bovine viral diarrhea virus (BVDV), a close relative of human Hepatitis C virus, consists of three stem-loops which are separated by two single-stranded regions. As in other positive-stranded RNA viruses, the 3' NTR of pestiviruses is involved in crucial processes of the viral life cycle. While several studies characterized cis-acting elements within the 3' NTR of a BVDV replicon, there are no studies addressing the significance of these elements in the context of a replicating virus. To examine the functional importance of 3' NTR elements, a set of 4-base deletions and deletions of each of the three stem-loops were introduced into an infectious BVDV cDNA clone. Emerging mutant viruses were characterized with regard to plaque phenotype, growth kinetics, and synthesis of viral RNA. The results indicated that presence of stem-loop (SL) I and the 3'-terminal part of the single-stranded region between stem-loops I and II are indispensable for pestiviral replication. In contrast, deletions within SL II and SL III as well as absence of either SL II or SL III still allowed efficient viral replication; however, a mutant RNA lacking both SL II and SL III was not infectious. The results of this study provide a detailed map of the essential and nonessential elements within the 3' NTR of BVDV and contribute to our understanding of sequence and structural elements important for efficient viral replication of pestiviruses in natural host cells.  相似文献   

4.
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.  相似文献   

5.
Sequences in the 5' and 3' termini of plus-strand RNA viruses harbor cis-acting elements important for efficient translation and replication. In case of the hepatitis C virus (HCV), a plus-strand RNA virus of the family Flaviviridae, a 341-nucleotide-long nontranslated region (NTR) is located at the 5' end of the genome. This sequence contains an internal ribosome entry site (IRES) that is located downstream of an about 40-nucleotide-long sequence of unknown function. By using our recently developed HCV replicon system, we mapped and characterized the sequences in the 5' NTR required for RNA replication. We show that deletions introduced into the 5' terminal 40 nucleotides abolished RNA replication but only moderately affected translation. By generating a series of replicons with HCV-poliovirus (PV) chimeric 5' NTRs, we could show that the first 125 nucleotides of the HCV genome are essential and sufficient for RNA replication. However, the efficiency could be tremendously increased upon the addition of the complete HCV 5' NTR. These data show that (i) sequences upstream of the HCV IRES are essential for RNA replication, (ii) the first 125 nucleotides of the HCV 5' NTR are sufficient for RNA replication, but such replicon molecules are severely impaired for multiplication, and (iii) high-level HCV replication requires sequences located within the IRES. These data provide the first identification of signals in the 5' NTR of HCV RNA essential for replication of this virus.  相似文献   

6.
Cap-independent translation of encephalomyocarditis virus (EMCV) RNA is controlled by a segment of the 5' untranslated region termed the internal ribosomal entry site, or IRES. The IRES contains a series of stem-loop structural elements. The J and K stems (EMCV bases 682 to 795), near the center of the IRES, are well conserved among all cardio-, aphtho-, and hepatoviruses. We have examined the biological roles of these elements by constructing mutations within the J-K sequences of EMCV and testing the mutations for activity in translation, translation competition, UV cross-linking, and viral infectivity assays. Mutations near the helical junction of J and K proved severely detrimental to both cellular translation and cell-free translation of downstream cistrons. The same mutations reduced the ability of the IRES to compete for cellular factors in competition assays and reduced the infectivity of viral genomes carrying these lesions. A mutation in the terminal loop of J gave similar results. In contrast, mutations within the terminal loop of K had minimal impact on in vitro translation activity and IRES competitive ability. However, in vivo analysis of the K-loop mutations revealed deficiencies during cellular translation and further showed markedly reduced infectivity in HeLa cells. UV cross-linking experiments identified a 49-kDa protein which interacts strongly with the J-K region, but the identity of this protein and its contribution to IRES activity are unclear.  相似文献   

7.
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.  相似文献   

8.
9.
Jaoudé GA  Sureau C 《Journal of virology》2005,79(16):10460-10466
The infectious particles of hepatitis B virus (HBV) and hepatitis delta virus (HDV) are coated with the large, middle, and small envelope proteins encoded by HBV. While it is clear that the N-terminal pre-S1 domain of the large protein, which is exposed at the virion surface, is implicated in binding to a cellular receptor at viral entry, the role in infectivity of the envelope protein antigenic loop, also exposed to the virion surface and accessible to neutralizing antibodies, remains to be established. In the present study, mutations were created in the antigenic loop of the three envelope proteins, and the resulting mutants were evaluated for their capacity to assist in the maturation and infectivity of HDV. We observed that short internal combined deletions and insertions, affecting residues 109 to 133 in the antigenic loop, were tolerated for secretion of both subviral HBV particles and HDV virions. However, when assayed for infectivity on primary cultures of human hepatocytes or on the recently described HepaRG cell line, virions carrying deletions between residues 118 and 129 were defective. Single amino acid substitutions in this region revealed that Gly-119, Pro-120, Cys-121, Arg-122, and Cys-124 were instrumental in viral entry. These results demonstrate that in addition to a receptor-binding site previously identified in the pre-S1 domain of the L protein, a determinant of infectivity resides in the antigenic loop of HBV envelope proteins.  相似文献   

10.
We generated a number of small deletions and insertions in the 5' noncoding region of an infectious cDNA copy of the poliovirus RNA genome. Transfection of these mutated cDNAs into COS-1 cells produced the following phenotypic categories: (i) wild-type mutations, (ii) lethal mutations, (iii) mutations exhibiting slow growth or low-titer properties, and (iv) temperature-sensitive (ts) mutations. The deletion of nucleotides 221 to 224 produced a ts virus, 220D1. Mutant 220D1 was found to have a dramatic reduction in growth, virus-specific protein and RNA synthesis, and the shutoff of host cell protein synthesis at 37 or 39 degrees C compared with 33 degrees C. Temperature shift experiments showed that the mutant viral RNA is not an effective template for protein or RNA synthesis at 39 degrees C and suggested a decreased stability of the 220D1 RNA at 39 degrees C. Selection for a non-ts revertant of 220D1 yielded the virus R2, which was no longer ts for growth or viral protein and RNA synthesis. Sequencing the 5' noncoding region of the genomic RNA from R2 revealed the deletion of 41 proximal nucleotides for an overall deletion of nucleotides 184 to 228. These data suggest that the deleted sequences are nonessential to the poliovirus life cycle during growth in HeLa cells. According to computer-predicted RNA secondary structures of the 5' noncoding region of poliovirus RNA, the R2 revertant virus has deleted an entire predicted stem-loop structure.  相似文献   

11.
The role of the 5' nontranslated region in the replication of hepatitis A virus (HAV) was studied by analyzing the translation and replication of chimeric RNAs containing the encephalomyocarditis virus (EMCV) internal ribosome entry segment (IRES) and various lengths (237, 151, or 98 nucleotides [nt]) of the 5'-terminal HAV sequence. Translation of all chimeric RNAs, truncated to encode only capsid protein sequences, occurred with equal efficiency in rabbit reticulocyte lysates and was much enhanced over that exhibited by the HAV IRES. Transfection of FRhK-4 cells with the parental HAV RNA and with chimeric RNA generated a viable virus which was stable over continuous passage; however, more than 151 nt from the 5' terminus of HAV were required to support virus replication. Single-step growth curves of the recovered viruses from the parental RNA transfection and from transfection of RNA containing the EMCV IRES downstream of the first 237 nt of HAV demonstrated replication with similar kinetics and similar yields. When FRhK-4 cells infected with recombinant vaccinia virus producing SP6 RNA polymerase to amplify HAV RNA were transfected with plasmids coding for these viral RNAs or with subclones containing only HAV capsid coding sequences downstream of the parental or chimeric 5' nontranslated region, viral capsid antigens were synthesized from the HAV IRES with an efficiency equal to or greater than that achieved with the EMCV IRES. These data suggest that the inherent translation efficiency of the HAV IRES may not be the major limiting determinant of the slow-growth phenotype of HAV.  相似文献   

12.
13.
The genome of the hepatitis C virus (HCV) is a plus-strand RNA molecule that carries a single long open reading frame. It is flanked at either end by highly conserved nontranslated regions (NTRs) that mediate crucial steps in the viral life cycle. The 3' NTR of HCV has a tripartite structure composed of an about 40-nucleotide variable region, a poly(U/UC) tract that has a heterogeneous length, and a highly conserved 98-nucleotide 3'-terminal sequence designated the X tail or 3'X. Conflicting data as to the role the sequences in the 3' NTR play in RNA replication have been reported. By using the HCV replicon system, which is based on the self-replication of subgenomic HCV RNAs in human hepatoma cell line Huh-7, we mapped in this study the sequences in the 3' NTR required for RNA replication. We found that a mutant with a complete deletion of the variable region is viable but that replication is reduced significantly. Only replicons in which the poly(U/UC) tract was replaced by a homouridine stretch of at least 26 nucleotides were able to replicate, whereas RNAs with homopolymeric guanine, adenine, or cytosine sequences were inactive. Deletions of individual or all stem-loop structures in 3'X were not tolerated, demonstrating that this region is most crucial for efficient RNA replication. Finally, we found that none of these deletions or substitutions within the 3' NTR affected RNA stability or translation, demonstrating that the primary effect of the mutations was on RNA replication. These data represent the first detailed mapping of sequences in the 3' NTR assumed to act as a promoter for initiation of minus-strand RNA synthesis.  相似文献   

14.
15.
16.
17.
Cap-independent translation of the hepatitis C virus (HCV) genomic RNA is mediated by an internal ribosome entry site (IRES) within the 5′ untranslated region (5′UTR) of the virus RNA. To investigate the effects of alterations to the primary sequence of the 5′UTR on IRES activity, a series of HCV genotype 1b (HCV-1b) variant IRES elements was generated and cloned into a bicistronic reporter construct. Changes from the prototypic HCV-1b 5′UTR sequence were identified at various locations throughout the 5′UTR. The translation efficiencies of these IRES elements were examined by an in vivo transient expression assay in transfected BHK-21 cells and were found to range from 0.4 to 95.8% of the activity of the prototype HCV-1b IRES. Further mutational analysis of the three single-point mutants most severely defective in activity, whose mutations were all located in or near stem-loop IIIc, demonstrated that both the primary sequence and the maintenance of base pairing within this stem structure were critical for HCV IRES function. Complementation studies indicated that defective mutants containing either point mutations or major deletions within the IRES elements could not be complemented in trans by a wild-type IRES.  相似文献   

18.
Direct sequencing of nine Sendai virus defective interfering RNA species revealed two kinds of 3'-terminal sequences. Six RNA species had 3' termini identical to the virus genome (negative strand), confirming that internal deletions are a frequent cause of Sendai virus defectiveness. The other three RNA species had 3'-terminal sequences identical to that described as the complement of the 5' terminus of the virus genome (R. A. Lazzarini, J. D. Keene, and M. Schubert, Cell 26:145-154, 1981), indicating that they are of the copy-back type. Extensive homology between these two types of 3' sequences evidently accounts for the ability of the copy-back sequence to function as an initiation signal for viral RNA replication. There may not be a selective advantage of one type of terminus over the other, since one defective interfering strain possessed two RNA species, one of which had the genomic 3' terminus and the other copy-back type.  相似文献   

19.
Flaviviruses have a positive-stranded RNA genome, which simultaneously serves as an mRNA for translation of the viral proteins. All of the structural and nonstructural proteins are translated from a cap-dependent cistron as a single polyprotein precursor. In an earlier study (K. K. Orlinger, V. M. Hoenninger, R. M. Kofler, and C. W. Mandl, J. Virol. 80:12197-12208, 2006), it was demonstrated that an artificial bicistronic flavivirus genome, TBEV-bc, in which the region coding for the viral surface glycoproteins prM and E from tick-borne encephalitis virus (TBEV) had been removed from its natural context and inserted into the 3' noncoding region under the control of an internal ribosome entry site (IRES) from encephalomyocarditis virus (EMCV) produces viable, infectious virus when cells are transfected with this RNA. The rates of RNA replication and infectious particle formation were significantly lower with TBEV-bc, however, than with wild-type TBEV. In this study, we have identified two types of mutations, selected by passage in BHK-21 cells, that enhance the growth properties of TBEV-bc. The first type occurred in the E protein, and these most likely increase the affinity of the virus for heparan sulfate on the cell surface. The second type occurred in the inserted EMCV IRES, in the oligo(A) loop of the J-K stem-loop structure, a binding site for the eukaryotic translation initiation factor 4G. These included single-nucleotide substitutions as well as insertions of additional adenines in this loop. An A-to-C substitution in the oligo(A) loop decreased the efficiency of the IRES itself but nevertheless resulted in improved rates of virus particle formation and overall replication efficiency. These results demonstrate the need for proper balance in the competition for free template RNA between the viral RNA replication machinery and the cellular translation machinery at the two different start sites and also identify specific target sites for the improvement of bicistronic flavivirus expression vectors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号