首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Anthropogenic disturbances are known to modify plant–animal interactions such as those involving the leaf‐cutting ants, the most voracious and proliferating herbivore across human‐modified landscapes in the Neotropics. Here, we evaluate the effect of chronic anthropogenic disturbance (e.g., firewood collection, livestock grazing) and vegetation seasonality on foraging area, foliage availability in the foraging area, leaf consumption and herbivory rate of the leaf‐cutting ant Atta opaciceps in the semiarid Caatinga, a mosaic of dry forest and scrub vegetation in northeast Brazil. Contrary to our initial expectation, the foraging area was not affected by either disturbance intensity or the interaction between season and disturbance intensity. However, leaf consumption and herbivory rate were higher in more disturbed areas. We also found a strong effect of seasonality, with higher leaf consumption and herbivory rate in the dry season. Our results suggest that the foraging ecology of leaf‐cutting ants is modulated by human disturbance and seasonality as these two drivers affect the spectrum and the amount of resources available for these ants in the Caatinga. Despite the low productivity of Caatinga vegetation, the annual rates of biomass consumption by A. opaciceps are similar to those reported from other leaf‐cutting ants in rain forests and savannas. This is made possible by maintaining high foraging activity even in the peak of the dry season and taking benefit from any resource available, including low‐quality items. Such compensation highlights the adaptive capacity of LCA to persist or even proliferate in human‐modified landscapes from dry to rain forests.  相似文献   

3.
Leaf-cutting ants (LCA) are generalist herbivores capable of causing severe plant damage. Negative impacts of ant herbivory vary according to the density of nests and availability of palatable plants; however, it is not yet clear how these herbivores affect tropical forest restoration sites. To investigate how LCA preference affects plant species performance, we evaluated the herbivory of Atta sexdens rubropilosa on native tree species seedlings in Atlantic Forest restoration sites. We expected pioneer species to suffer higher herbivory by LCA when compared with non-pioneer species and that species with higher damage will have poorer growth and higher mortality. The experiment was conducted in three restoration sites in northern Paraná state, southern Brazil, with 1,500 seedlings of 5 pioneer and 5 non-pioneer species. Sites share similar age, stand size, tree species composition, and LCA nest density. The number of attacks, degree of leaf damage, number of leaves, plant height, and survival were recorded. Specific leaf area, leaf polyphenols, flavonoids, tannins, and nitrogen content were analyzed for each species. Plant damage was similar between pioneer and non-pioneer plant species. This could be explained by trait variability among species in each group and by LCA generalist foraging. Preferred species suffered decreases in growth and survival. Less preferred species suffered fewer ant attacks and no change in performance. Results suggest that ant herbivory can influence plant species establishment and thus species composition in restoration sites by reducing performance and increasing mortality of some, but not all species, making LCA an important ecological filter.  相似文献   

4.
Major shifts in the availability of palatable plant resources are of key relevance to the ecology of leaf‐cutting ants in human‐modified landscapes. However, our knowledge is still limited regarding the ability of these ants to adjust their foraging strategy to dynamic environments. Here, we examine a set of forest stand attributes acting as modulating forces for the spatiotemporal architecture of foraging trail networks developed by Atta cephalotes L. (Hymenoptera: Formicidae: Attini). During a 12‐month period, we mapped the foraging systems of 12 colonies located in Atlantic forest patches with differing size, regeneration age, and abundance of pioneer plants, and examined the variation in five trail system attributes (number of trails, branching points, leaf sources, linear foraging distance, and trail complexity) in response to these patch‐related variables. Both the month‐to‐month differences (depicted in annual trail maps) and the steadily accumulating number of trails, trail‐branching points, leaf sources, and linear foraging distance illustrated the dynamic nature of spatial foraging and trail complexity. Most measures of trail architecture correlated positively with the number of pioneer trees across the secondary forest patches, but no effects from patch age and size were observed (except for number of leaf sources). Trail system complexity (measured as fractal dimension; Df index) varied from 1.114 to 1.277 along the 12 months through which ant foraging was monitored, with a marginal trend to increase with the abundance of pioneer stems. Our results suggest that some leaf‐cutting ant species are able to generate highly flexible trail networks (via fine‐tuned adjustment of foraging patterns), allowing them to profit from the continuous emergence/recruitment of palatable resources.  相似文献   

5.
Using field assays of leaf preference, we tested the hypothesis that wilting affects the selection of leaves by the leaf-cutting ant Atta laevigata (Fr. Smith). Detached leaves were left to air-dry until noticeably wilted. The area removed by the ants from wilted leaves was significantly greater than the area removed from fresh leaves, this effect being observed in several plant species, in leaves of different age, and in assays with different ant colonies. Leaves collected from water-stressed plants were also preferred to leaves from non-stressed plants. A. laevigata was found to employ a two-stage, size-related, strategy when cutting plants. Larger workers climbed the plant stem and dropped whole leaves to the ground by severing their petioles; smaller workers cut the lamina of the dropped leaves. The ants frequently left dropped leaves on the ground, until the next foraging day or even later, when they were harvested in a wilted condition in preference to newly-dropped leaves.It is possible that during wilting some repellent substances evaporate or become less effective, thus enhancing leaf palatability. Alternatively or in addition, changes in nutrient and water content may have rendered wilted leaves more palatable to leaf-cutting ants.  相似文献   

6.
Queens of the leaf‐cutting ant species Atta laevigata and Atta capiguara were collected soon after their mating flight and maintained in the laboratory until death. Ant corpses showing signs of contamination by insect pathogenic fungi were selected for fungal identification. Filamentous fungi such as Beauveria bassiana and Paecilomyces lilacinus actively sporulated in the ant’s corpses. This is the first report of the latter fungus on reproductives of leaf‐cutting ants. The fact that queens may acquire filamentous fungi including saprophytic and potential insect pathogens after their mating event is especially interesting regarding the impacts of such microbes on the establishment of a new nest.  相似文献   

7.
Maternal host choices during oviposition by herbivorous insects determine the fitness of their offspring and may be influenced by environmental changes that can alter host‐plant quality. This is of particular relevance to ‘push‐pull’ cropping systems where host preferences are exploited to manage insect pest populations. We tested how drought stress in maize and companion plants that are used in these systems affect oviposition preference, larval feeding, and development of the spotted stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae). Five host species were tested (all Poaceae): maize (Zea mays L.), Napier grass (Pennisetum purpureum Schumach), signal grass [Brachiaria brizantha (A. Rich) Stapf], Brachiaria cv. ‘Mulato’, and molasses grass [Melinis minutiflora (Beauv.)]. Under drought stress, maize experienced as much oviposition as control unstressed maize in choice and no‐choice experiments. Similarly, larval leaf damage was not significantly different in drought‐stressed vs. unstressed maize. In contrast, oviposition occurred less on drought‐stressed than on unstressed Napier and signal grass. Oviposition acceptance and leaf damage remained low in both drought‐stressed and unstressed molasses grass and Mulato. Larval survival and development remained high in drought‐stressed maize, but not in Napier, signal, and molasses grass and Mulato, where survival and development were low in both drought‐stressed and unstressed plants. Our results indicate that herbivore responses to drought‐stressed plants depend on the plant species and that drought stress can change host preference and acceptance rankings. In particular, trap‐crops such as Napier grass may not divert oviposition from the main maize crop under drought stress conditions.  相似文献   

8.
The responses of the grass‐cutting ants Atta bisphaerica (Forel) and Atta capiguara (Gonçalves) to the main components of their alarm pheromones were examined in simple field bioassays. Both species react most strongly to 4‐methyl‐3‐heptanone, which causes the full range of alarm behaviour and a large increase in the number of individuals near the sources. In later experiments with A. capiguara, this increase was found to be due primarily to attraction, with some arrestment also occurring. The ant response to 4‐methyl‐3‐heptanone was compared with that to crushed heads and to that with whole ants with crushed heads. The pheromone 4‐methyl‐3‐heptanone by itself stimulates the same level of attraction as crushed heads, but results in far less alarm behaviour and arrests fewer ants. Whole ants with crushed heads attract a greater number of ants than the other sources and also cause more alarm behaviour. Bodies alone attract ants, but do not result in alarm behaviour. The main component in both species is the same, supporting the view that alarm pheromones lack species specificity. However, it appears that other components may also be important either as synergists of the main compound, or by stimulating behaviours that would not be observed in its absence.  相似文献   

9.
Herbivory has been identified as a potent evolutionary force, but its ecological impacts have been frequently underestimated. Leaf‐cutting ants represent one of the most important herbivores of the Neotropics and offer an interesting opportunity to address the role played by herbivorous insects through a perspective that embraces population‐ to ecosystem‐level effects. Here we: (1) qualitatively summarize the multiple ways leaf‐cutting ants interact with food plants and their habitats and elucidate the ultimate outcome of such interactions at multiple organization levels; (2) update our understanding of leaf‐cutting ant‐promoted disturbance regimes; and (3) examine potential ecological roles by leaf‐cutting ants within the context of human‐modified landscapes to guide future research agendas. First, we find that leaf‐cutting ants show that some herbivorous insects are able to generate ecologically important disturbance regimes via non‐trophic activities. Second, impacts of leaf‐cutting ants can be observed at multiple spatio‐temporal scales and levels of biological organization. Third, ecosystem‐level effects from leaf‐cutting ants are ecosystem engineering capable not only of altering the abundance of other organisms, but also the successional trajectory of vegetation. Finally, effects of leaf‐cutting ants are context‐dependent, species‐specific, and synergistically modulated by anthropogenic interferences. Future research should examine how leaf‐cutting ants respond to deforestation and influence remaining vegetation in human‐modified landscapes. By promoting either heterogeneity or homogeneity, leaf‐cutting ants operate not only as agricultural pests but also as ecological key players.  相似文献   

10.
To examine the susceptibility of five Costa Rican tree species to leaf-cutter ants (Atta cephalotes L.: Formicidae, Attini), young and mature leaves from trees that were grown in a plantation under full sun and partial shade were offered to six leaf-cutter colonies located in full sun and six in patial shade. In addition to offering leaf disks to the ants, we offered large pieces of leaves to assess the effect of cutting leaves on food choices. Leaf-cutters responded differently to each plant species, preferring Virola koschyni Warburg (Myristicaceae) and Hyeronima alchorneoides Allemao (Euphorbiaceae) over Stryphnodendrum microstachyum Poeppig & Endlicher (Mimosoideae), Pentaclethra macroloba Willdenow (Fabaceae) and Vochysia ferruginea Martius (Vochysiaceae). In agreement with previous studies, interspecific differences among the tree species in water and saponin content appeared to account for the observed ant preferences among the five tree species: leaf-cutter ants preferred leaves and disks with more water and less saponins and the five tree species varied significantly in these traits. An observed positive correlation between preference and phenolic/nitrogen ratio appears to be spurious, and is instead due to a negative correlation between water content and nitrogen content. For the first time, Atta nest location has been shown to affect consumption: nests located in partial shade removed more leaf material than those from the sun plots. However, nest location had no effect on preference ranking of the tree species tested. Pieces of leaves from all the tree species grown in partial shade were significantly more removed than those trees grown in full sun. Leaf age, toughness, leaf specific weights, ant activity, and colony were not correlated with food choices. Because of the observed preferences, the five tree species should not be considered as equal candidates for plantation purposes. However, complete characterization of the candidate status of tree species for plantations in the neotropics must include information on the ability of such species to tolerate pest attacks in addition to their natural defenses to attack.  相似文献   

11.
Jerome J. Howard 《Oecologia》1990,82(3):394-401
Summary Leafcutting ants have strong among- and within-plant preferences, and generally abandon plants long before they are completely defoliated. Two tropical deciduous forest tree species preferred by the leafcutting ant Atta colombica were studied to determine how variation in resource quality affects ant selectivity and partial defoliation of plants. Significant differences in palatability and leaf characteristics of Spondias mombin and Bursera simaruba were found among trees and among leaf types within trees, but not among branches within trees. No short-term responses to experimental defoliation of up to 50% of total canopy were found in either species. Leaf nutrient and poisture content were positively correlated, and phenolic content negatively correlated, with the palatability of Spondias mombin, a species containing hydrolyzable tannins. Leaf moisture and phenolic content were both positively correlated with the palatability of Bursera simaruba, which contains predominantly condensed tannins. The results suggest that variation in leaf quality among and within plants is at least a partial explanation for ant selectivity and partial defoliation of preferred species. There is no evidence that rapidly induced changes in plant chemistry affect ant decisions to abandon these plants. Instead, it appears likely that ants abandon plants once high-quality leaf patches are exhausted. Quantitative variation in leaf nutrients, moisture, and secondary chemicals all appear to contribute to ant preferences for individuals and tissues of highly palatable plants.  相似文献   

12.
Leaf‐cutting ants are highly polyphagous insects, but some plants escape their attack due to the presence of secondary metabolites that are toxic to the ant–fungus symbiosis. Previous studies have demonstrated that the terpenoid β‐eudesmol extracted from Eucalyptus species (Myrtaceae) is responsible for the deleterious behavior in colonies of leaf‐cutting ant species. The objective of this study was to evaluate the effect of β‐eudesmol on workers of the leaf‐cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). This chemical caused behavioral modification in the colonies, leading to mutilation and death of workers. It is suggested that β‐eudesmol interferes with colony nestmate recognition. As a consequence, colony cohesion may be disrupted by β‐eudesmol what could be used as an additional control tactic against this important pest ant.  相似文献   

13.
Ant‐lycaenid associations range from mutualism to parasitism and the caterpillars of some species of lycaenids are reported to enter ant nests for shelter, diapause, or pupation. The present study aimed to examine the nature of the association between Euchrysops cnejus (Fabricius) (Lepidoptera: Lycaenidae) and Camponotus compressus (Fabricius) (Hymenoptera: Formicidae) worker ants on the extrafloral nectary‐bearing cowpea plant, Vigna unguiculata (L.) Walp. (Fabaceae). The abundance patterns of the ants and the lycaenid caterpillars together with the spatial patrolling patterns of the ants on the plants revealed that ant abundance increased with the occurrence of the lycaenid caterpillars and the ants preferred the lycaenids over the extrafloral nectar. Camponotus compressus worker ants constructed a shelter at the cowpea plant base after interaction with one or more lycaenid caterpillar(s) and tended the caterpillars and pupae till the emergence of the butterfly. The ant‐constructed shelters (ACSs) inhabited by the minor caste workers (13 ± 1.3 ants per ACS), were utilized by the caterpillars to undergo pupation. The ants confined their activities predominantly to tending the pod‐feeding caterpillars and the solitary pupa within each ACS. It appears that the behavior of the tending worker ants is modulated by the lycaenid vulnerable stages.  相似文献   

14.
The foraging behaviour of social insects is highly flexible because it depends on the interplay between individual and collective decisions. In ants that use foraging trails, high ant flow may entail traffic problems if different workers vary widely in their walking speed. Slow ants carrying extra‐large loads in the leaf‐cutting ant Atta cephalotes L. (Hymenoptera: Formicidae) are characterized as ‘highly‐laden’ ants, and their effect on delaying other laden ants is analyzed. Highly‐laden ants carry loads that are 100% larger and show a 50% greater load‐carrying capacity (i.e. load size/body size) than ‘ordinary‐laden’ ants. Field manipulations reveal that these slow ants carrying extra‐large loads can reduce the walking speed of the laden ants behind them by up to 50%. Moreover, the percentage of highly‐laden ants decreases at high ant flow. Because the delaying effect of highly‐laden ants on nest‐mates is enhanced at high traffic levels, these results suggest that load size might be adjusted to reduce the negative effect on the rate of foraging input to the colony. Several causes have been proposed to explain why leaf‐cutting ants cut and carry leaf fragments of sizes below their individual capacities. The avoidance of delay in laden nest‐mates is suggested as another novel factor related to traffic flow that also might affect load size selection The results of the presennt study illustrate how leaf‐cutting ants are able to reduce their individual carrying performance to maximize the overall colony performance.  相似文献   

15.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

16.
H. L. Vasconcelos 《Oecologia》1997,112(3):370-378
This study investigates some factors affecting the foraging activity of the leaf-cutting ant Atta laevigata. The study was conducted on an abandoned farm near Manaus, in Brazilian Amazonia, where forest was beginning to regenerate. I determined how temporal changes in the structure of the woody plant community (linked to the regeneration process) affected the leaf harvesting activity of this Neotropical ant. A 0.39-ha plot was established, and woody plants existing and emerging in this plot were identified, tagged, measured and mapped. At intervals of approximately 14 days all marked plants were checked to determine which had been attacked by A. laevigata during that period. Woody plant density doubled over the 18-months of the study. However, the number of plants attacked by A. laevigata, controlling for seasonal differences in ant activity, was independent of the number available for attack. The number of plants attacked was also independent of the number of new plants emerged in the previous 2 months. Apart from changes in total plant density, the relative abundance of most species also changed with time. Data on the composition of the plant community and on the composition of the ants' diet at different time intervals were subject to ordination analysis. The analyses revealed that successional changes in the composition of the woody plant community did significantly affect the composition of the leaf diet of A. laevigata. Variations in the ants' diet correlated most strongly with variations in the abundance of Bellucia imperialis. As this increased in abundance its relative contribution to the ants' diet increased. In addition, I observed a small decline in the diversity of plant resources exploited by the ants. B. imperialis was one of the species most preferred by A. laevigata, suggesting that variations in the diversity of its diet were related to the abundance of preferred species. The chances of an individual plant being attacked was independent of whether or not the plant had been attacked during the previous 5 months. This suggests that plant resistance against ant herbivory is not affected by previous damage. Two other lines of evidence also pointed to this. First, there was no significant difference in the leaf area cut (as measured during assays of leaf preference with A. laevigata) between leaves of plants that had been subject to artificial defoliation 3 mo earlier and those of control plants. Second, the number of attacks by A. laevigata on individuals of a given species usually followed a random distribution, even though a uniform or clumped distribution would have been expected under the hypothesis that damage by leaf-cutting ants affects the plant's resistance to further damage. Received: 3 March 1997 / Accepted: 23 June 1997  相似文献   

17.
Conventional control of leaf‐cutting ants is mainly carried out by application of solid insecticide baits. However, alternative approaches could increase the efficiency of control methods. Here, we investigated the hypothesis that liquid and semi‐solid baits are more readily ingested by leaf‐cutting ants and are therefore more toxic than solid baits. Furthermore, following increased ingestion rates, ants could perform higher frequencies of trophallactic exchanges with their nest mates, thus increasing dispersal rates within the colony. Each of three diets were offered to Acromyrmex subterraneus subterraneus (Forel) and Atta sexdens rubropilosa Forel (both Hymenoptera: Formicidae) for 1 h under laboratory conditions and subsequently crop volumes were quantified. The highest crop volumes for both species were seen when the diet was offered in liquid form, and the lowest crop volumes were observed after offering solid diets. Survival rates of the ants were monitored following addition of the neonicotinoid insecticide imidacloprid (IMI) to the three diets. The ingestion of liquid and semi‐solid diets + IMI by A. subterraneus resulted in 17 and 6% survival, respectively, whereas these diets caused 100% mortality of A. sexdens. Ingestion of solid diets with IMI resulted in 51% survival of A. subterraneus and 23% survival of Atta workers. Twenty‐three percent of A. subterraneus which had fed on liquid diet carried out trophallactic exchanges, whereas only 10 and 3% of ants carried out trophallaxis when fed on semi‐solid or solid diet, respectively. Lower trophallactic frequencies were observed for A. sexdens, with 13 and 3% of ants that had fed on liquid and semi‐solid diets performing trophallaxis, respectively. The low trophallactic exchange rates following ingestion of solid diets would reduce the dispersal of these compounds throughout the colony. Control strategies using solid baits should be re‐examined in the light of these findings, which indicate the importance of optimizing insecticide ingestion.  相似文献   

18.
Although leaf‐cutter ants have been recognized as the dominant herbivore in many Neotropical ecosystems, their role in nutrient cycling remains poorly understood. Here we evaluated the relationship between plant palatability to leaf‐cutter ants and litter decomposability. Our rationale was that if preference and decomposability are related, and if ant consumption changes the abundance of litter with different quality, then ant herbivory could affect litter decomposition by affecting the quality of litter entering the soil. The study was conducted in a woodland savanna (cerrado denso) area in Minas Gerais, Brazil. We compared the decomposition rate of litter produced by trees whose fresh leaves have different degrees of palatability to the leaf‐cutter ant Atta laevigata. Our experiments did not indicate the existence of a significant relationship between leaf palatability to A. laevigata and leaf‐litter decomposability. Although the litter mixture composed of highly palatable plant species showed, initially, a faster decay rate than the mixture of poorly palatable species, this difference was no longer visible after about 6 months. Results were consistent regardless of whether litter invertebrates were excluded or not from litter bags. Similarly, experiments comparing the decomposition rate of litter from pairs of related plant species also showed no association between plant palatability and decomposition. Decomposition rate of the more palatable species was faster, slower or similar to that of the less palatable species depending upon the particular pair of species being compared. We suggest that the traits that mostly influence the decomposition rate of litter produced by cerrado trees may not be the same as those that influence plant palatability to leaf‐cutter ants. Atta laevigata select leaves of different species based – at least in part – on their nitrogen content, but N content was a poor predictor of the decomposition rates of the species we studied.  相似文献   

19.
The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley ( Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h?1 compared with 35 attacks h?1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions.  相似文献   

20.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号