首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Neotropical‐native figitid Aganaspis pelleranoi (Brèthes) and the Asian braconid Diachasmimorpha longicaudata (Ashmead) are two parasitoids of Tephritidae fruit flies with long and recent, respectively, evolutionary histories in the Neotropics. Both species experienced a recent range of overlap. In Argentina, A. pelleranoi is a potential species in biological control programs against the pestiferous tephritid species, Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann), whereas D. longicaudata is already used in open‐field releases against Medfly in central‐western Argentina. To characterize the host‐foraging strategies of A. pelleranoi and D. longicaudata, olfactometer experiments were conducted comparing responses to C. capitata and A. fraterculus larvae, in two kinds of food substrate: fruit and artificial larval medium. To control the possible influence of host larvae used for parasitoid rearing on olfactory response, two strains of both parasitoid species, reared on both tephrtid species, were studied. Volatiles directly emanating either from A. fraterculus or C. capitata larvae may be detected by both A. pelleranoi and D. longicaudata, although chemical stimuli originating from the combination of host larvae and the habitat of the host were preferred. However, olfactory cues associated with host larvae probably play a relevant role in host searching behaviour of A. pelleranoi, whereas for D. longicaudata, the host‐habitat olfactory stimuli would be highly essential in short‐range host location. The strain of the parasitoids did not affect host search ability on the two tephritid species evaluated. These evidences are relevant for mass production of both parasitoids and their impact following open‐field augmentative releases.  相似文献   

2.
Ceratitis capitata (or medfly) is one of the major pests currently affecting fruit crops in northwestern Argentinian Citrus-producing areas. Medfly populations are sustained in large exotic fruits, such as Citrus paradisi, Citrus aurantium and Citrus sinensis, which are known to hinder the activity of almost all native parasitoid species. Therefore, a feasible approach to controlling medfly involves the use of exotic parasitoids such as Diachasmimorpha longicaudata. In this study, the prediction that parasitoid females would be proficient at finding medfly larvae infesting the Citrus species mentioned earlier was tested. Particularly, the variation in fruit species preference by parasitoid females, the efficacy of the parasitoid to kill medfly and the effect of host density on parasitoid performance were determined. Parasitoids were allowed to forage for 8 h on grapefruits and oranges artificially infested with medfly larvae under controlled (laboratory) and uncontrolled (field cage) environmental conditions. Fruit choice and no-choice tests were performed. Results were assessed by comparing the number of female visits to and ovipositor insertions into the fruit, and parasitoid emergence, parasitism and additional host mortality percentages. Parasitoid preference for visiting larger fruits (sour orange and grapefruit) may be related to the increased fruit surface area. Ovipositional activity on fruit was influenced by the variation of the larval host density per unit of fruit surface. The higher parasitism rates recorded from sweet orange would be mainly a result of both increased host density and fruit physical features. Nevertheless, D. longicaudata showed the capacity to parasitise hosts in all Citrus species tested.  相似文献   

3.
The larval–pupal endoparasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is currently the most commonly employed biological control agent against Tephritid fruit flies in the Americas. However, this parasitoid remains largely ignored and is not used in many regions, including the Mediterranean Basin. In this study, the potential of D. longicaudata as a biocontrol agent against the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae) was addressed in an area of eastern Spain (the Valencian community). The parasitic activity of parasitoids and the effects of climatic conditions were evaluated throughout a 1‐year period in field‐cage experiments in which parasitoids were confined with apples artificially infested with medfly larvae. The following parameters were calculated and related statistically to several environmental conditions: the parasitism rate, the induced mortality and progeny sex ratio. The results show that D. longicaudata is able to parasitize medfly larvae throughout the year under semi‐natural conditions. Important fluctuations in the parasitism rate (from almost zero to 42%) and the induced mortality (from 6% to 80%) were partially influenced by climatic conditions. The parasitism rate increased with mean temperature and decreased with mean relative humidity, while the induced mortality decreased with minimum relative humidity. The optimal climatic conditions for the activity of the parasitoid were a mean temperature of 16–24°C combined with a relative humidity of 45%–60%. Overall, these results suggest that reduction in the medfly population due to D. longicaudata activity is feasible and provide information about the optimal time period for parasitoid release in the field. In conclusion, D. longicaudata has a significant potential to control C. capitata in the Mediterranean region.  相似文献   

4.
Tephritid fruit fly parasitoids use fruit-derived chemical cues and the vibrations that result from larval movements to locate hosts sequestered inside fruit. However, compounds produced by the larvae themselves have not been previously described nor their significance to parasitoid foraging determined. We collected the volatiles from four species of tropical and subtropical Tephritidae: Anastrepha suspensa (Loew), Bactrocera dorsalis Hendel, Bactrocera cucurbitae Coquillett, and Ceratitis capitata (Wiedemann), representing two subfamilies (Dacinae and Trypetinae). Para-ethylacetophenone, an analog of a known tephritid parasitoid attractant, was a major constituent of all four, and was not associated with larvae of another acalypterate fly, Drosophila melanogaster Meigen, or with the calypterate Musca domestica L. It also was present in volatiles from whole, A. suspensa infested fruits of Eugenia uniflora (L.). Para-ethylacetophenone was not necessarily produced as a direct consequence of fruit consumption because it also was detected from larvae that developed in two artificial diets and in spent diets subsequent to larval development. Sensillae on both the antennae and ovipositor of the opiine braconid fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead) responded to the para-ethylacetophenone in larval volatiles and as a synthetic. Although a potential cue to foraging parasitoids, para-ethylacetophenone showed no long range (>1m) attractiveness to the adult female parasitoid, but did stimulate ovipositor-insertion and oviposition into both a natural (fruit) and an artificial (parafilm) substrate. Thus it may prove useful in colonizing and mass-rearing opine fruit fly parasitoids.  相似文献   

5.
Tephritid fruit fly parasitoid guilds are dominated by solitary koinobiont species that attack different host stages, but most emerge as adults from host puparia. Previous studies suggest intrinsic competitive superiority by the egg-attacking parasitoid Fopius arisanus (Sonan) against all larval-attacking parasitoids in Hawaii. In this study, we tested the early-acting competitive superiority prediction in relation to the co-evolutionary history of competition between an egg–larval parasitoid (Fopius ceratitivorus Wharton), and each of three larval parasitoids [Psyttalia concolor (Szépligeti), Diachasmimorpha kraussii (Fullaway), and Diachasmimorpha longicaudata (Ashmead)]. F. ceratitivorus and P. concolor share a common origin (eastern Africa), while D. kraussii is an Australian species, and D. longicaudata is from Southeast Asia. The outcomes of intrinsic competition between the egg-attacking parasitoid and each of the three larval-attacking parasitoids within their common host, the Mediterranean fruit fly Ceratitis capitata (Wiedemann) were compared. F. ceratitivorus invariably eliminated the co-evolved P. concolor through physiological suppression of the later-attacking parasitoid’s egg development, providing evidence that supports the early-acting-superiority hypothesis. However, F. ceratitivorus was unable to suppress development of the two non co-evolved larval parasitoids. Instead, the larvae of both later-acting parasitoid species physically killed F. ceratitivorus larvae inside the host. The results suggest that co-evolutionary history influences competitive superiority. The evolution of inter-specific competition and its implications for biological control are discussed.  相似文献   

6.
1. In a tritrophic interaction system consisting of plants, herbivores, and their parasitoids, chemicals released from plants after herbivory are known to play important roles for many female parasitoids to find their hosts efficiently. On the plant side, chemical information associated with herbivory can act as an indirect defence by attracting the natural enemies of the host herbivores. 2. However, mated and virgin females of haplodiploid parasitoids might not necessarily respond to such chemical cues in the same way. Since virgin females can produce only sons, they might refrain from searching for hosts to invest eggs until copulation, in order to produce both sexes. 3. Here, we investigated differential host‐searching behaviours shown by mated and virgin females in the solitary parasitoid wasp, Cotesia vestalis, in response to herbivory‐associated chemical information from cruciferous plants infested by their host larvae, Plutella xylostella. 4. Mated females showed a significantly higher flight preference for host‐infested plants over intact plants, while no preference was observed with virgin females. Mated females also showed more intensive antennal searching and ovipositor probing behaviours to leaf squares with wounds caused by hosts than did virgin females. Furthermore, mated females stayed longer in host patches with higher parasitism rates than virgin females. 5. These results indicate that mating status of C. vestalis females clearly influences their host‐searching behaviour in response to herbivory‐associated chemical information and patch exploitation. Female parasitoids seem to forage for hosts depending on their own physiological condition in a tritrophic system.  相似文献   

7.
The earwig Euborellia annulipes (Lucas) (Dermaptera: Anisolabididae), a generalist predator, has been observed in fruits infested with fruit fly larvae, which are frequently parasitized by parasitoid wasps. Neither the capacity of earwigs to predate on fruit flies nor intraguild interactions between earwigs and fruit fly parasitoids have been investigated. Here, we studied in laboratory conditions the predation on the fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) by the earwig E. annulipes, and whether parasitism of fruit fly larvae by the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) influences predation by the earwig. We evaluated the predation capacity, functional response and prey preference of E. annulipes for parasitized and non-parasitized fruit fly larvae in choice and no-choice tests. We found that earwigs prey on second- and third-instar larvae and pupae of C. capitata and consumed larger numbers of second-instar larvae, followed by third-instar larvae and pupae. Females prey on larger numbers of fruit flies than did males, regardless of the prey developmental stage, but both sexes exhibited a type II functional response. Interestingly, males killed but did not consume fruit fly larvae more than did females. In no-choice tests, earwig females consumed equal numbers of parasitized and non-parasitized fruit fly larvae. However, in choice tests, the females avoided feeding on parasitized larvae. Subsequent tests with hexane-washed parasitized and non-parasitized larvae showed that putative chemical markings left on fruit flies by parasitoids did not drive the earwig preference towards non-parasitized larvae. These findings suggest that E. annulipes is a potential biological control agent for C. capitata, and that, because the earwig avoids consuming larvae parasitized by D. longicaudata, a combination of the two natural enemies could have an additive effect on pest mortality.  相似文献   

8.
The olfactory responses of the native parasitoids Doryctobracon areolatus (Szépligeti) and Asobara anastrephae (Muesebeck) and of the exotic parasitoid Diachasmimorpha longicaudata (Ashmead) to guava (Psidium guajava L.) infested or not with fruit fly larvae were evaluated. D. areolatus and D. longicaudata females responded to the odors of uninfested rotting guavas, although D. areolatus was also attracted to fruits at the initial maturation (turning) stage. The females of these species recognized the volatiles of guavas containing Ceratitis capitata (Wied.) larvae. However, in bioassays involving fruits with larvae of different instars, D. longicaudata females were not able to separate between fruits containing C. capitata larvae at the initial instars and larvae at the third instar. In the evaluations of volatiles released by guavas containing C. capitata and Anastrepha fraterculus (Wied.) larvae, the D. longicaudata females were oriented toward the volatiles of fruits containing both host species, but differed significantly from volatiles of guavas containing C. capitata larvae. The D. areolatus females also showed responses to both species, although with a preference for volatiles of fruits containing A. fraterculus larvae. The A. anastrephae females were oriented toward the odors of fruits infested with both fruit fly species. In the shade house, D. longicaudata females were oriented to volatiles of rotting fruits containing larvae or not, but could not significantly differentiate between hosts. D. areolatus females were not attracted toward fruits on the ground in the shade house, regardless of host, suggesting that this parasitoid does not forage on fallen fruits.  相似文献   

9.
Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host) represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively) could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach) using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging.  相似文献   

10.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

11.
A fruit trap was developed for detection and collection of the opiine parasitoids of the oriental fruit fly,Bactrocera (=Dacus)dorsalis (Hendel). Gravid females ofBiosteres arisanus (Sonan), an egg-larval parasitoid, orDiachasmimorpha longicaudata (Ashmead) andPsytallia incisi (Silvestri), both larval parasitoids, were lured to parasitize the eggs or larvae ofB. dorsalis inoculated in ripe papaya fruits,Carica papaya L. Progenies ofB. arisanus were consistently recovered from papaya fruits inoculated withB. dorsalis eggs (subsequently referred to as egg fruit traps). Except in Moloaa on Kauai (6%), higher percentage ofB. dorsalis parasitization (range=38–43%) was recorded in Hilo, island of Hawaii and Waimanalo and Poamoho, island of Oahu. Progenies ofD. longicaudata and a fewP. incisi were recovered from papaya fruits artificially infested withB. dorsalis larvae (subsequently referred to as larval fruit traps). The recovery of parasitoid progenies from larval fruit traps suspended from papaya trees did not differ significantly from larval fruit traps placed on the ground. In both methods of trap placement, percent parasitization ofB. dorsalis byD. longicaudata (predominant species) ranged from 58–60%. On the other hand, significantly moreB. arisanus thanD. longicaudata andP. incisi adults (larval parasitoids) were recovered from fully ripened to highly deteriorated papaya fruits collected from papaya trees or ground (fallen fruits).  相似文献   

12.
Abstract In parasitoids, host‐habitat odour can influence host searching within the habitat. This is the case in Leptopilina sp. (Hymenoptera, Figitidae), a Drosophila parasitoid searching for larvae by ovipositor probes. This a behaviour can be conditioned to fruit odours. In a previous study, the latency of probing to a fruit odour is reported to have a genetic variability within a laboratory strain. This suggests a link between rapidity of host discovery and fitness. In the present study, this hypothesis is tested by comparing responses to host‐habitat odours between two genotypes of Leptopilina heterotoma Thomson, from the Mediterranean coast (Antibes) and from Burgundy (Tailly). The two genotypes present contrasting rhythms and levels of locomotor activity linked to contrasting interspecific competition in their area of origin. The high activity observed in the Mediterranean genotype is interpreted as an adaptive response to a limited time‐window to win against a competitor species absent in Burgundy. The present study finds differentiation in innate but not learnt responses to host‐habitat odours. The more active genotype (Antibes) has a higher probability and a shorter latency of innate probing to the odours than the less active genotype (Tailly); Antibes females also find larvae and complete infestations more rapidly. Learning equalizes the probability and the latency of probing to the odours in both strains, and increases the probing duration. Innate responses to host‐habitat odours would allow time‐limited insects to increase their reproductive rate, when host predictability is high in the habitat. Selection of faster innate responses to host and habitat cues without evolution of learnt responses indicates that the initial host discovery is more crucial to fitness than subsequent ones.  相似文献   

13.
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivorederived cues than plant-derived cues. Microplitis croceipes (Cresson)(Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.)(Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores:(i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. I terestingly, naive parasitoids attacked more soybeathan cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.  相似文献   

14.
Coptera haywardi (Oglobin) is an endoparasitoid of fruit fly pupae that could find itself in competition with other parasitoids, both con- and heterospecific, already resident inside hosts. In choice bioassays, ovipositing C. haywardi females strongly discriminated against conspecifically parasitised Anastrepha ludens (Loew) pupal hosts. They also avoided pupae previously attacked by Diachasmimorpha longicaudata (Ashmead), a larval–prepupal koinobiont endoparasitoid, and the degree of larval-parasitoid superparasitism had no effect on this avoidance. There was no difference in the number of ovipositor insertions when hosts previously parasitised by a conspecific and D. longicaudata were exposed simultaneously. As females aged the degree of host discrimination declined. An ability to discriminate against pupae previously attacked as larvae suggests low levels of both conspecific and heterospecific competition in the field.  相似文献   

15.
The biological attributes of three introduced species of parasitoids which attack the fruit fly Anastrepha ludens were evaluated. Larvae and eggs of A. ludens were exposed to larval parasitoids Diachasmimorpha longicaudata and D. tryoni and the egg parasitoid Fopius arisanus. Parasitoid longevity and fecundity were determined using larvae and eggs of A. ludens. Likewise, the parasitism rates of these parasitoid species in infested host fruits were recorded. The intrinsic rate of increase for F. arisanus was 0.1019 followed by D. tryoni with a rate of 0.1641 and D. longicaudata with the highest rate of 0.2233. Although F. arisanus females had the highest levels of fecundity, only 50% of them remained alive until reproductive age. These results in combination with the longer generation time (in comparison with D. longicaudata and D. tryoni), can be considered as the most important factors explaining F. arisanus reduced rate of increase. However, we note that oviposition activity caused egg mortality which reduced Anastrepha egg hatch by ca. 20%. This result suggests that F. arisanus has a high potential as a natural enemy of A. ludens, in accordance with our research efforts to develop a new F. arisanus strain specialized for development in Anastrepha eggs. The results show that D. tryoni is not a good candidate for biological control of Anastrepha. Meanwhile, D. longicaudata continues to be the most important exotic parasitoid for suppression of Anastrepha fruit fly populations.  相似文献   

16.
半闭弯尾姬蜂寄主搜索中的学习行为   总被引:3,自引:3,他引:0  
李欣  刘树生 《昆虫学报》2003,46(6):749-754
研究了半闭弯尾姬蜂寄主搜索过程中的学习行为。结果表明,成虫期之前的饲养寄主所取食的寄主植物对成蜂行为没有影响,而雌蜂早期的短暂经历可对其随后的行为反应产生显著影响,从而对已经历的植物气味表现出显著的嗜好,但这种通过学习所表现出的嗜好又可因新的经历而改变。雌成蜂不仅能对其所经历的虫伤寄主植物释放的信息化合物进行学习,而且对其所经历的寄主幼虫的信息化合物也能进行学习。  相似文献   

17.
Cohorts of mass-reared, naive Diachasmimorpha longicaudata, parasitoids of tephritid fruit flies, were released in a laminar airflow wind tunnel to study their responses to visual and olfactory stimuli associated with their host habitat. Parasitoids were five times more likely to land on yellow plastic spheres emitting the odor of ripe, guava fruit (Psidium guajava L.) than to spheres emitting clean air. The rate of landing was not modified by the presence of green artificial leaves adjacent to the spheres in the tunnel or by the inclusion of green leaf volatiles emanating with the guava odors. However, hovering activity was twice as frequent around spheres adjacent to artificial leaves than around isolated spheres. Oviposition activity on spheres emitting guava odor was not affected by the presence of artificial leaves nor by green leaf volatiles. This suggests that inexperienced D. longicaudata may be instinctively attracted to foliage and to fruit odor but that landing (arrestment) and oviposition are influenced more by odor than by the appearance of fruit or foliage. D. longicaudata are not instinctively attracted to larvae of Bactrocera dorsalis in the absence of host-habitat stimuli. More wasp activity occurred around oviposition units containing larvae if the odor of ripe/overripe guava was present. Successful wasp reproduction occurred only in units with guava odor.  相似文献   

18.
Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) is a solitary parasitoid used in augmentative releases to control Tephritidae (Diptera) fruit flies of economic importance. Pre-release process includes packing adult parasitoids in cages at high densities and expose them to a temperature of 2 ± 2 °C during 105 min. In this process, females’ antennae may be damaged resulting in a reduction in their host-searching ability and fecundity. Here we measured, for five consecutive days after chilling, the searching ability and fecundity of parasitoids with damaged (D) and undamaged (ND) antennae compared with parasitoids that were not chilled. Female individual responses to fruit infested by Anastrepha spp. was determined in an olfactometer. Latency in the response and latency in making a choice were recorded. Additionally, groups of 30 females were used to measure their ability to find hosts in infested fruit in the laboratory. Fecundity was determined by using artificial oviposition units with Anastrepha ludens (Loew) larvae. In the olfactometer test, ND had lower response than control females during the 1st and 2nd days after chilling. However, no difference in the response was observed between ND and D and the control females on the 5th day. Additionally, chilled females showed a longer latency of response to infested fruit than females of the control treatment when tested in groups. However, after a 24–48 h period, no difference between D and ND and control females was observed. Our results showed similar searching ability and fecundity among parasitoids of the three tested conditions at individual and at group levels. We conclude that pre-release chilling reduces female searching ability only for the first 1–2 days after chilling.  相似文献   

19.
  • 1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts.
  • 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively.
  • 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato.
  • 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae.
  • 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present.
  • 6 We conclude that herbivore‐induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly‐identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.
  相似文献   

20.
Abstract 1. When offered a choice, female diamondback moths (Plutella xylostella) oviposited more eggs on plants with non‐parasitised conspecific larvae than on plants with parasitised larvae. 2. The leaf area consumed by parasitised larvae was significantly lower than that by non‐parasitised larvae. However, this quantitative difference in larval damage did not explain the female’s ability to discriminate between plants with parasitised and non‐parasitised larvae, as females showed an equal oviposition preference for plants infested by higher or lower densities of non‐parasitised larvae. 3. Pupal weight and duration of the larval stage of P. xylostella were independent of whether larvae were reared on plants that were previously infested by either non‐parasitised or parasitised larvae. 4. The larval parasitoid Cotesia vestalis did not distinguish between plants infested by non‐parasitised larvae and plants infested by larvae that had already been parasitised by conspecific wasps. 5. Based on these data, it can be concluded that the moth oviposition preference for plants infested by non‐parasitised conspecifics relative to plants infested by parasitised conspecifics was not explained by plant quality or by the attractiveness of plants towards wasps. It is hypothesised that one of the reasons for this preference is avoidance of plants where a relatively high risk of parasitism is expected due to the emergence of parasitoids from the parasitised host larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号