首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
IAN NEWTON 《Ibis》2006,148(4):782-788
Over much of Europe, Common Crossbills Loxia curvirostra depend primarily on the seeds of Norway Spruce Picea abies , and their breeding and movement patterns are governed largely by the cropping patterns of this tree species. Good cone crops occur only every few years in particular areas, but in different years in different areas. The main period of movement is in summer, when the previous year's crop is coming to an end, and a new crop is forming in different areas. In years when the Norway Spruce crop is poor over a wide area, and when Common Crossbills are abundant, they leave the boreal forest in large numbers, and appear as irruptive migrants in southwest Europe, with at least 40 invasions reaching Britain in the 120-year period 1881–2000. On irruptions the main migration axis is from northeast to southwest or west. Recoveries of birds ringed mainly in Germany confirm that these birds do not return to the boreal forest in northern Russia in the same calendar year as their irruption, but do so only in a later calendar year, when a new Norway Spruce crop is becoming available. The findings agree with an earlier interpretation of Common Crossbill movements, but not with an alternative hypothesis that irrupting Common Crossbills return to their region of origin in the same calendar year as the outward movement. Recoveries also suggest that some individual Common Crossbills may have bred in widely separated localities in different years (records up to 3170 km apart), and sometimes in localities far removed from their natal sites (records up to 2950 km apart).  相似文献   

2.
Endogenous circannual clocks are found in many long-lived organisms, but are best studied in mammal and bird species. Circannual clocks are synchronized with the environment by changes in photoperiod, light intensity and possibly temperature and seasonal rainfall patterns. Annual timing mechanisms are presumed to have important ultimate functions in seasonally regulating reproduction, moult, hibernation, migration, body weight and fat deposition/stores. Birds that live in habitats where environmental cues such as photoperiod are poor predictors of seasons (e.g. equatorial residents, migrants to equatorial/tropical latitudes) rely more on their endogenous clocks than birds living in environments that show a tight correlation between photoperiod and seasonal events. Such population-specific/interspecific variation in reliance on endogenous clocks may indicate that annual timing mechanisms are adaptive. However, despite the apparent adaptive importance of circannual clocks, (i) what specific adaptive value they have in the wild and (ii) how they function are still largely untested. Whereas circadian clocks are hypothesized to be generated by molecular feedback loops, it has been suggested that circannual clocks are either based upon (i) a de-multiplication ('counting') of circadian days, (ii) a sequence of interdependent physiological states, or (iii) one or more endogenous oscillators, similar to circadian rhythms. We tested the de-multiplication of days (i) versus endogenous regulation hypotheses (ii) and (iii) in captive male and female house sparrows (Passer domesticus). We assessed the period of reproductive (testicular and follicular) cycles in four groups of birds kept either under photoperiods of LD 12L:12D (period length: 24h), 13.5L:13.5D (27 h), 10.5L:10.5D (23 h) or 12D:8L:3D:1L (24-h skeleton photoperiod), respectively, for 15 months. Contrary to predictions from the de-multiplication hypothesis, individuals experiencing 27-h days did not differ (i.e. did not have longer) annual reproductive rhythms than individuals from the 21- or 24-h day groups. However, in line with predictions from endogenous regulation, birds in the skeleton group had significantly longer circannual period lengths than all other groups. Birds exposed to skeleton photoperiods experienced fewer light hours per year than all other groups (3285 versus 4380) and had a lower daily energy expenditure, as tested during one point of the annual cycle using respirometry. Although our results are tantalizing, they are still preliminary as birds were only studied over a period of 15 months. Nevertheless, the present data fail to support a 'counting of circadian days' and instead support hypotheses proposing whole-organism processes as the mechanistic basis for circannual rhythms. We propose a novel energy turnover hypothesis which predicts a dependence of the speed of the circannual clock on the overall energy expenditure of an organism.  相似文献   

3.
Annual migrations of birds profoundly influence terrestrial communities. However, few empirical studies examine why birds migrate, in part due to the difficulty of testing causal hypotheses in long-distance migration systems. Short-distance altitudinal migrations provide relatively tractable systems in which to test explanations for migration. Many past studies explain tropical altitudinal migration as a response to spatial and temporal variation in fruit availability. Yet this hypothesis fails to explain why some coexisting, closely-related frugivorous birds remain resident year-round. We take a mechanistic approach by proposing and evaluating two hypotheses (one based on competitive exclusion and the other based on differences in dietary specialization) to explain why some, but not all, tropical frugivores migrate. We tested predictions of these hypotheses by comparing diets, fruit preferences, and the relationships between diet and preference in closely-related pairs of migrant and resident species. Fecal samples and experimental choice trials revealed that sympatric migrants and residents differed in both their diets and fruit preferences. Migrants consumed a greater diversity of fruits and fewer arthropods than did their resident counterparts. Migrants also tended to have slightly stronger fruit preferences than residents. Most critically, diets of migrants more closely matched their preferences than did the diets of residents. These results suggest that migrants may be competitively superior foragers for fruit compared to residents (rather than vice versa), implying that current competitive interactions are unlikely to explain variation in migratory behavior among coexisting frugivores. We found some support for the dietary specialization hypothesis, propose refinements to the mechanism underlying this hypothesis, and discuss how dietary specialization might ultimately reflect past interspecific competition. We recommend that future studies quantify variation in nutritional content of tropical fruits, and determine whether frugivory is a consequence or a cause of migratory behaviour.  相似文献   

4.
In northern Europe the long‐tailed tit Aegithalos c. caudatus shows irregular outbreaks of migrating individuals in autumn. Therefore, this species is generally believed to be irruptive, moving in response to external environmental stimuli such as food limitation or overpopulation in the breeding area. We studied the locomotory activity of 24 young captive long‐tailed tits from August up to early May of the following year. All hand raised birds from the local population of Lake Ladoga region (NW Russia) exhibited a distinct seasonal pattern in their locomotory activity similar to birds trapped on migration. They showed a rise in activity both in autumn and spring period. Fat reserves did not peak in autumn but increased along with spring activity. The timing of increase in the locomotory activity and fat reserves, as well as daily pattern and maximum level of activity in autumn depended on photoperiod. Long‐tailed tits kept on the photoperiod, simulating late hatching, started to migrate at an earlier age and showed a significantly higher level of activity in autumn compared to their siblings kept on the photoperiod simulating early hatching. The present findings suggested that in the studied species there is an annual cycle of migratory restlessness that is exhibited in captivity and is influenced by photoperiod.  相似文献   

5.
A variety of methods have been used to study the relationship between wind conditions and departure decisions of migrant birds at stopover sites. These methods are either costly or suffer from inaccuracy in determining whether or not an individual has resumed migration. Here we present a novel and simple approach to studying the relationship between wind conditions and departure likelihood. Northern Wheatears Oenanthe oenanthe caught during stopover were temporarily caged to measure their nocturnal migratory restlessness, which is an accurate proxy for their individual departure likelihood. We then related the degree of nocturnal restlessness to wind conditions prevailing at the time of capture. Confirming the general pattern from previous studies of departure, the intensity of nocturnal migratory restlessness, and hence departure likelihood, increased with increasing wind support towards the migratory goal. This suggests that approximating the propensity to depart by measuring nocturnal migratory restlessness is a reliable way to study the effect that wind conditions experienced during stopover has on the departure decision of migrants. Our study also shows that nocturnal migrants possess the ability to use information gathered during the day for their departure decisions at night. Because measuring migratory restlessness is straightforward and inexpensive, our approach is ideally suited to test hypotheses regarding spatio‐temporal variation in wind selectivity in migrating birds.  相似文献   

6.
Fall migration of Red‐headed Woodpeckers (Melanerpes erythrocephalus) can be erratic, with departure rates, directions, and distances varying among populations and individuals. We report fall migration departure dates, rates, and routes, and the size of fall home ranges of 62 radio‐tagged Red‐headed Woodpeckers in western South Carolina. Rates of fall migration differed among years; all radio‐tagged woodpeckers migrated in 2005 (15 of 15), none (0 of 23) migrated in 2006, and 54.2% (13 of 24) migrated in 2007. Of 28 woodpeckers that left their breeding territories, we relocated eight either en route or on their fall home ranges. These woodpeckers migrated short distances (4.3–22.2 km) south along the floodplain forest of a large creek. The variable migration patterns we observed indicate that Red‐headed Woodpeckers may best be described as facultative migrants. We determined the home range sizes of 13 woodpeckers in both seasons, regardless of whether they migrated, and fall home ranges were smaller (mean = 1.12 ha) than summer home ranges (mean = 3.23 ha). Fall‐winter movements of Red‐headed Woodpeckers were concentrated on mast‐producing oak (Quercus spp.) trees, which may have restricted home range sizes. The partial migration we observed in 2007 suggests that factors other than mast crop variability may also influence migration patterns because woodpeckers that year responded to the same annual mast crop in different ways, with some migrating and some remaining on breeding season home ranges during the fall.  相似文献   

7.
Each year the Mythimna separate (Walker), undertakes a seasonal, long-distance, multigeneration roundtrip migration between southern and northern China. Despite its regularity, the decision to migrate is facultative, and is controlled by environmental, physiological, hormonal, genetic, and molecular factors. Migrants take off on days 1 or 2 after eclosion, although the preoviposition period lasts ≈7 d. The trade-offs among the competing physiological demands of migration and reproduction are coordinated in M. separata by the "oogenesis-flight syndrome." Larvae that experience temperatures above or below certain thresholds accompanied by appropriate humidity, short photoperiod, poor nutrition, and moderate density tend to develop into migrants. However, there is a short window of sensitivity within 24 h after adult eclosion when migrants can be induced to switch to reproductive residents if they encounter extreme environmental factors including starvation, low temperature and long photoperiod. Juvenile hormone (JH) titer is low before migration but high titers are associated with termination of migratory behavior and the switch to reproduction. Early release of JH by the corpora allata in environmentally stressed 1-d old adults, otherwise destined by larval conditions to be migrants, switches them to residents. Offspring inherit parental additive genetic effects governing migratory behavior. However, they also retain flexibility in expression of both flight and reproductive life history traits. The insect neuropeptide, allatotropin, which activates corpora allata to synthesize JH, controls adult flight and reproduction. Future research directions to better understand regulation of migration in this species are discussed.  相似文献   

8.
9.
Irruptive migrants often show biased sex and age ratio, and typically young females are the most abundant class participating in irruptions. Several hypotheses have been proposed to explain differential migration in birds. We examined these hypotheses in a sexually size‐dimorphic species (females being larger than males), the pygmy owl Glaucidium passerinum, whose migration behaviour has also been poorly documented. Migration data were collected at the Hanko Bird Observatory, SW Finland during 1979–2010. Pygmy owls showed large fluctuations in migration numbers between years. Most of the migrants were young birds and females migrated in larger numbers than males. Results support the ‘territory defence hypothesis’ since males showed weaker tendency to migrate despite the smaller body size, but the ‘dominance hypothesis’ was also supported (subordinate young outnumber dominant adults in migration numbers). Findings support the idea that in owl species, which are dependent on nesting cavities, males show lower migration behaviour than females, whereas the pattern is opposite in species which normally breed outside cavities. In addition, adults migrated later than young, likely because they need to moult remiges before departure. Early hatched young also migrated earlier than late hatched young, suggesting that more dominant young migrate first.  相似文献   

10.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

11.
Socially acquired information improves the accuracy and efficiency of environmental assessments and can increase fitness. Public information may be especially useful during unpredictable food conditions, or for species that depend on resources made less predictable by human disturbance. However, the physiological mechanisms by which direct foraging assessments and public information are integrated to affect behaviour remain largely unknown. We tested for potential effects of public information on the behavioural and hormonal response to food reduction by manipulating the social environment of captive red crossbills (Loxia curvirostra). Red crossbills are irruptive migrants that are considered sensitive to changes in food availability and use public information in decision making. Here, we show that public information can attenuate or intensify the release of glucocorticoids (i.e. stress hormones) during food shortage in red crossbills. The observed modulation of corticosterone may therefore be a physiological mechanism linking public information, direct environmental assessments and behavioural change. This mechanism would not only allow for public information to affect individual behaviour, but might also facilitate group decision making by bringing group members into more similar physiological states. The results further suggest that stressors affecting entire populations may be magnified in individual physiology through social interactions.  相似文献   

12.
This paper considers how Philippine migrants prepare themselves and are prepared by others for emigration to Canada. In particular, it emphasizes how class-differentiated migrants are rendered socially homogenous as they are encouraged to be “grateful” transnational citizen subjects throughout their migration trajectories, commencing with initial decisions to migrate. Preparations for migration include individual decisions to increase marketability by acquiring particular kinds of skill sets matched to one of a variety of immigration streams. Despite such individual projects, the inequalities associated with gendered and racialized characteristics of Philippine migration trajectories and class dynamics are enduring for many migrants, though not all. Historical structural processes shaping the contours of global migration in the example of Philippine–Canada migration are compounded by the contradictory practices and outcomes associated with various preparations for migration. Current reforms to Canada’s immigration system to a “just-in-time” model promise to cause major disruptions to long-held migrant plans. Meanwhile, migrants are preconditioned to accept uncritically the multiple forms of subordination encouraged through the policies of multiple states and to accommodate themselves to new immigrant/citizen social identities which are devalued in a multiplicity of ways. This paper shows how, through the collusion of agents that migrants encounter in multiple sites, the disciplining of mobile citizens becomes more formalized and the contradictions between migrant ambition and neoliberal imperatives more visible.  相似文献   

13.
ABSTRACT Investigation of bird migration has often highlighted the importance of external factors in determining timing of migration. However, little distinction has been made between short- and long-distance migrants and between local and flight birds (passage migrants) in describing migration chronology. In addition, measures of food abundance as a proximate factor influencing timing of migration are lacking in studies of migration chronology. To address the relationship between environmental variables and timing of migration, we quantified the relative importance of proximate external factors on migration chronology of local American woodcock (Scolopax minor), a short distance migrant, using event-time analysis methods (survival analysis). We captured 1,094 woodcock local to our study sites in Michigan, Minnesota, and Wisconsin (USA) during autumn 2002–2004 and documented 786 departure dates for these birds. Photoperiod appeared to provide an initial proximate cue for timing of departure. Moon phase was important in modifying timing of departure, which may serve as a navigational aid in piloting and possibly orientation. Local synoptic weather variables also contributed to timing of departure by changing the rate of departure from our study sites. We found no evidence that food availability influenced timing of woodcock departure. Our results suggest that woodcock use a conservative photoperiod-controlled strategy with proximate modifiers for timing of migration rather than relying on abundance of their primary food, earthworms. Managing harvest pressure on local birds by adjusting season lengths may be an effective management tool with consistent migration patterns from year to year based on photoperiod.  相似文献   

14.
Most animals, including birds, have cyclic life histories and numerous studies generally conducted on captive animals have shown that photoperiod is the main factor influencing this periodicity. Moon cycles can also affect periodic behavior of birds. Few studies have investigated the influence of these environmental cues in natural settings, and particularly in tropical areas where the change in photoperiod is slight and some bird species keep cyclic behaviors. Using miniaturized light sensors, we simultaneously investigated under natural conditions the influence of photoperiod and moon phases on the migration dates and at-sea activity of a tropical seabird species, the Barau's petrel, throughout its annual cycle. Firstly, we found that birds consistently started their pre- and post-breeding migrations at precise dates corresponding in both cases to a day-duration of 12.5 hours, suggesting a strong influence of the photoperiod in the regulation of migration behavior. We also found that mean population arrival dates to the colony changed from year to year and they were influenced by moon phases. Returns at their colonies occurred around the last full moon of the austral winter, suggesting that moon cycle is used by birds to synchronize their arrival. Secondly, variations of day-time activity were sinusoidal and correlated to seasonal changes of daylength. We thus hypothesize that the photoperiod could directly affect the behavior of the birds at sea. Night-time at-sea activity exhibited a clear cycle of 29.2 days, suggesting that nocturnal foraging was highly regulated by moon phase, particularly during the non-breeding season. To our knowledge, this is the first study to document a mixed regulation of the behavior of a wild bird by photoperiod and moon phases throughout its annual cycle.  相似文献   

15.
This article compares the migration processes to, and the socio‐economic conditions of colonial Caribbean migrants in, the metropoles. Specifically, it discusses: 1) the formation of modern colonies in the Caribbean after World War II; 2) the differences between colonial Caribbean migrations and migrations from Caribbean nation‐states; 3) the different socio‐economic characteristics among Caribbean colonial migrants in the metropoles; and 4) the labour market incorporation and public policies affecting colonial Caribbean migrants in each metropolitan society. There are interesting differences among these Caribbean colonial migrants regarding the process of incorporation into the host society. This is related to the different development of the welfare state in each metropole and to the presence or absence of specific public policies addressing the peculiar socio‐economic conditions of these migrants.  相似文献   

16.
The paper reviews the data on diapause and related phenomena in stink bugs (Heteroptera: Pentatomidae). Using stink bugs as examples, the consecutive stages of the complex dynamic process of diapause (such as diapause preparation, induction, initiation, maintenance, termination, post-diapause quiescence, and resumption of direct development) are described and discussed. Out of 43 pentatomid species studied in relation to diapause in the Temperate Zone up to date, the majority (38 species) overwinter as adults, two species—as eggs, and another two species—as nymphs. Pentatoma rufipes is believed to be able to overwinter at different stages of its life cycle. Less than 5 % of pentatomid species are probably able to overwinter twice. Only five species have obligate diapause, others have the facultative one. Day-length and temperature are the main diapause inducing factors in the majority of species. The role of food in the control of seasonal development is essential in the pentatomid species feeding on plant seeds. In different species, different stages are sensitive to day-length. Some pentatomids retain sensitivity to photoperiod even after diapause, others lose it and become photo-refractory (temporarily or permanently). In Pentatomidae, such seasonal adaptations as photoperiodic control of nymphal growth rates, seasonal body colour change, migrations, and summer diapause (aestivation) are widely represented, whereas wing and/or wing muscle polymorphism has not been reported yet. In the subfamily Podopinae, induction of facultative reproductive winter diapause is under the control of photoperiod and temperature. All species feed on seeds and their seasonal development to a great extent reflects availability of food. However, the same food preferences and pattern of seasonal development are also characteristic to many species from the subfamily Pentatominae. All species of the subfamily Asopinae are predators. Among them, Picromerus bidens and Apateticus cynicus have obligate embryonic winter diapause, which is rear among true bugs. At the same time, A. cynicus and Podisus maculiventris belong to the same tribe but have different types of diapause: obligate embryonic diapause in A. cynicus and facultative adult diapause in P. maculiventris. Other Asopinae species studied up to date have facultative adult diapause controlled by photoperiod and temperature with probably only one exception: in Andrallus spinidens, adult diapause is controlled by temperature, and photoperiod plays only a secondary role. Thus, in spite of the similar habits and feeding types among Asopinae, the species of this subfamily have different types of diapause and the latter is controlled by different factors. In the subfamily Pentatominae, most species overwinter as adults and induction of their diapause is controlled by the long-day type photoperiodic response, in spite of the differences in their feeding preferences (within phytophagy). However, there are some exceptions in this subfamily, too: Palomena prasina, P. angulosa and Menida scotti have obligate diapause, which conditions univoltinism in these pentatomids. In M. scotti, only females have obligate adult diapause, whereas males remain physiologically active through the whole winter, this pattern being unusual for Heteroptera. The univoltine seasonal cycle of this species with summer diapause (aestivation) and apparent migrations is similar to that of shield bugs (Scutelleridae). According to the analysis of seasonal development, the evolution of seasonal adaptations in Pentatomidae does not directly reflect their phylogeny. However, individual genera, small tribes or even subfamilies have similar complexes of seasonal adaptations. At the same time, Pentatominae is a large and apparently collected taxon, but most of species in this subfamily have the same facultative adult diapause.  相似文献   

17.
Of the various forms of nonrandom dispersal, matching habitat choice, whereby individuals preferentially reside in habitats where they are best adapted, has relatively little empirical support. Here, I use mark‐recapture data to test for matching habitat choice in two nomadic ecotypes of North American Red Crossbills (Loxia curvirostra complex) that exist in the lodgepole pine (Pinus contorta) forests in the South Hills, Idaho, every summer. Crossbills are adapted for foraging on seeds in conifer cones, and in the South Hills the cones are distinctive, favoring a relatively large bill. During a period when seed was most limiting, only the largest individuals approximating the average size of the locally adapted ecotype remained for a year or more. During a period when seed was less limiting, proportionately more individuals remained and the trend for larger individuals to remain was weaker. Although matching habitat choice is difficult to demonstrate, it likely contributed to the observed patterns. Otherwise, nearly unprecedented intensities of natural selection would be needed. Given the nomadic behavior of most crossbill ecotypes and the heterogeneous nature of conifer seed crops, matching habitat choice should be favored and likely contributes to their adaptation to alternative conifers and rapid diversification.  相似文献   

18.
The urge of captive birds to migrate manifests itself in seasonally occurring restlessness, termed “Zugunruhe.” Key insights into migration and an endogenous basis of behavior are based on Zugunruhe of migrants but have scarcely been tested in nonmigratory birds. We recorded Zugunruhe of African stonechats, small passerine birds that defend year-round territories and have diverged from northern migrants at least 1 million years ago. We demonstrate that Zugunruhe is a regular feature of their endogenous program, one that is precisely timed by photoperiod. These results extend ideas of programs for periodic movement to include nonmigratory birds. Such programs could be activated when movements become necessary, in line with observed fast changes and high flexibility of migration. Attention to Zugunruhe of resident birds promises new insights into diverse and dynamic migration systems and enhances predictions of avian responses to global change.  相似文献   

19.
Yang X 《Social biology》2001,48(1-2):151-170
Using Hubei province as a case study, this paper retests the detachment hypothesis against the three conventional hypotheses regarding migration-fertility linkage (i.e., selectivity, disruption, and adaptation hypotheses) in explaining migrant and non-migrant fertility differentials in China. The analysis of yearly order-specific birth probabilities suggests that temporary migrants exhibit a significantly higher probability of having a second or higher order birth than comparable permanent migrants and non-migrants. This higher fertility among temporary migrants occurs after migration; temporary migrants actually do not differ from non-migrants in fertility before migration. But permanent migrants experience no significant change in their fertility after migration. The results lend a strong support to the detachment hypothesis, which best explains the fertility differentials between migrant and non-migrant populations in contemporary China; the separation of temporary migrants' actual residence from their official one does lead to a greater likelihood among temporary migrants to have unplanned births.  相似文献   

20.
Behavioral decisions made by migrating songbirds may depend on a variety of biotic and abiotic factors. To investigate which factors most influence songbird behavior on stopover, we related departure and directional decisions of captive birds released at the capture site to a variety of factors including, weather, date, energetic condition, age, sex, and species. We captured spring migrants during the day, released them after sunset, and visually assessed whether they departed the study site and if so, in which direction. Departure was strongly influenced by wind direction and energetic condition, especially fat stores. The proportion of birds departing increased as the season progressed. Directional decisions were also strongly influenced by energetic condition, particularly fat stores and plasma triglyceride levels. Wind direction also influenced the direction in which birds made migratory flights. While energetic condition, stage of migration, and weather seem to be important proximate determinants in departure and directional decisions, habitat availability and other factors may also need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号