首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: How do local and landscape management contribute to weed diversity in Hungarian winter cereal fields? Location: Central Hungary. Methods: Vascular plants were sampled in 18 winter cereal fields along an intensification gradient according to nitrogen fertilization, in the first cereal rows (edge) and in the interior part of the fields. Weed species were divided into groups according to their residence time in Central Europe (native species, archaeophytes, neophytes) and nitrogen preference (low to medium, LMNP, and high, HNP species). The percentage of semi‐natural habitats was calculated in the 500 m radius circle. Effects of fertilizer use, transect position and semi‐natural habitats were estimated by general linear mixed models. Results: We recorded 149 weed species. Fertilizer had a negative impact on the species richness of archaeophytes and LMNP species, and on the cover of native weeds. There was greater species richness and weed cover at the edge of the fields than in the centre. A higher percentage of seminatural habitats around the arable fields resulted in greater total species richness, especially of archaeophytes and LMNP species. We found an interaction between the percentage of semi‐natural habitats and transect position for species richness of archaeophytes and LMNP species. Conclusions: Reduced use of fertilizers and a high percentage of semi‐natural habitats would support native and archaeophyte weed diversity even in winter cereal fields, while large amounts of fertilizer may promote invasion of neophytes. However, the beneficial effect of the semi‐natural habitats and greater species pool on the arable flora may prevail only in the crop edges.  相似文献   

2.
Agricultural practices lead to losses of natural resources and biodiversity. Maintaining forests alongside streams (riparian forest strips) has been used as a mechanism to minimize the impact of clearing for agriculture on biodiversity. To test the contribution of riparian forest strips to conserve biodiversity in production landscapes, we selected bats as a biodiversity model system and examined two dimensions of diversity: taxonomic and functional. We compared bat diversity and composition in forest, with and without stream habitat, and in narrow forest riparian strips surrounded by areas cleared for agriculture. We tested the hypothesis that riparian forest strips provide potential conservation value by providing habitat and serving as movement corridors for forest bat species. Riparian forest strips maintained 75% of the bat species registered in forested habitats. We found assemblage in sites with riparian forest strips were dominated by a few species with high abundance and included several species with low abundance. Bat species assemblage was more similar between sites with streams than between those sites to forests without stream habitat. These results highlight the importance of stream habitat in predicting presence of bat species. We registered similar number of guilds between forest sites and riparian forest strips sites. Relative to matrix habitats, stream and edge habitats in riparian forest strips sites were functionally more diverse, supporting our hypothesis about the potential conservation value of riparian forest strips. Results from this study suggest that maintaining riparian forest strips within cleared areas for agricultural areas helps conserve the taxonomic and functional diversity of bats. Also, it provides basic data to evaluate the efficacy of maintaining these landscape features for mitigating impacts of agricultural development on biodiversity. However, we caution that riparian forest strips alone are not sufficient for biodiversity maintenance; their value depends on maintenance of larger forest areas in their vicinity.  相似文献   

3.
I examined the effect of riparian forest restoration on plant abundance and diversity, including weed species, on agricultural lands along the Sacramento River in California (United States). Riparian forest restoration on the Sacramento River is occurring on a large‐scale, with a goal of restoring approximately 80,000 ha over 160 km of the river. In multiuse habitats, such as the Sacramento River, effects of adjoining habitat types and movement of species across these habitats can have important management implications in terms of landscape‐scale patterns of species distributions. Increased numbers of pest animals and weeds on agricultural lands associated with restored habitats could have negative economic impacts, and in turn affect support for restoration of natural areas. In order to determine the distribution and abundance of weeds associated with large‐scale restoration, I collected seed bank soil samples on orchards between 0 and 5.6 km from adjacent restored riparian, remnant riparian, and agricultural habitats. I determined the abundance, species richness, and dispersal mode of plant species in the seed bank and analyzed these variables in terms of adjacent habitat type and age of restored habitat. I found that agricultural weed species had higher densities at the edge of restored riparian habitat and that native plants had higher densities adjacent to remnant riparian habitat. Weed seed abundance increased significantly on walnut farms adjacent to restored habitat with time since restored. I supply strong empirical evidence that large areas of natural and restored habitats do not lead to a greater penetration of weed species into agricultural areas, but rather that weed penetration is both temporally and spatially limited.  相似文献   

4.
1. Urban ecosystems create suitable habitats for many plant and animal species, including pollinators. However, heterogenic habitats in city centres and suburban areas have various effects on pollinators due to variations in the composition of vegetation and in landscape management by humans. 2. This study compared the abundance and species richness of three main groups of pollinators – wild bees, butterflies, and hoverflies – in Poznań, western Poland, and in three different types of urban green areas – urban grasslands, urban parks, and green infrastructure in housing estates. 3. The total abundance of pollinators was higher in urban grasslands than in housing estates and urban parks. Species composition of pollinator communities differed between the three habitat types. 4. The study results showed that species richness and abundance of butterflies varied between habitat types, whereas no such differences were found in the case of wild bees and hoverflies. Cover of green area, vegetation structure, and plant height were important for the pollinator community; however, these variables had different effects depending on habitat type. 5. These findings revealed that not all urban green areas are equally valuable in terms of local biodiversity. High‐quality urban habitats such as urban grasslands are capable of supporting rich and abundant populations of pollinators. Therefore, it is important to protect high‐value urban green areas and simultaneously strive to improve intensively managed urban habitats through effective planning and new management practices.  相似文献   

5.
Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro‐invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0–50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100–150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating key ecosystem services including storm water storage and water treatment.  相似文献   

6.
7.
Aim Despite the increasing pace of urbanization, little is known about how this process affects biodiversity globally. We investigate macroecological patterns of bird assemblages in urbanized areas relative to semi‐natural ecosystems. Location World‐wide. Methods We use a database of quantitative bird surveys to compare key assemblage structure parameters for plots in urbanized and semi‐natural ecosystems controlling for spatial autocorrelation and survey methodology. We use the term ‘urbanized’ instead of ‘urban’ ecosystems as many of the plots were not located in the centre of towns but in remnant habitat patches within conurbations. Results Some macroecological relationships were conserved in urbanized landscapes. Species–area, species–abundance and species–biomass relationships did not differ significantly between urbanized and non‐urbanized environments. However, there were differences in the relationships between productivity and assemblage structure. In forests, species richness increased with productivity; in both forests and open habitats, the evenness of species abundances declined as productivity increased. Among urbanized plots, instead, both species richness and the evenness of species abundances were independent of variation in productivity. Main conclusions Remnant habitats within urbanized areas are subject to many ecological alterations, yet key macroecological patterns differ remarkably little in urbanized versus non‐urbanized plots. Our results support the need for increased conservation activities in urbanized landscapes, particularly given the additional benefits of local experiences of biodiversity for the human population. With increasing urbanization world‐wide, broad‐scale efforts are needed to understand and manage the effects of this driver of change on biodiversity.  相似文献   

8.
Large tracts of natural habitat are being replaced by agriculture and urban sprawl in Mediterranean regions worldwide. We have limited knowledge about the effects of human activities on native species in these landscapes and which, if any, management practices might enhance the conservation of native biodiversity within them. Through a citizen volunteer bird-monitoring project, we compared bird abundance and species richness in northern Californian riparian zones surrounded by vineyards, urban areas, and natural areas. We assessed both local and landscape-level variables that may enhance native bird diversity in each land use type. We also demonstrate a new statistical approach, generalized estimating equations, to analyze highly variable data, such as that collected by volunteers. Avian abundance was highly correlated with both landscape context and local habitat variables, while avian richness was correlated with local habitat variables, specifically shrub richness, and percent of tree cover. In particular, shrub species richness has a strong positive correlation with riparian-preferring bird species. This suggests that active local management of riparian zones in human-dominated landscapes can increase our ability to retain native bird species in these areas.  相似文献   

9.
We used capture (mist‐netting) and acoustic methods to compare the species richness, abundance, and composition of a bat assemblage in different habitats in the Western Ghats of India. In the tropics, catching bats has been more commonly used as a survey method than acoustic recordings. In our study, acoustic methods based on recording echolocation calls detected greater bat activity and more species than mist‐netting. However, some species were detected more frequently or exclusively by capture. Ideally, the two methods should be used together to compensate for the biases in each. Using combined capture and acoustic data, we found that protected forests, forest fragments, and shade coffee plantations hosted similar and diverse species assemblages, although some species were recorded more frequently in protected forests. Tea plantations contained very few species from the overall bat assemblage. In riparian habitats, a strip of forested habitat on the river bank improved the habitat for bats compared to rivers with tea planted up to each bank. Our results show that shade coffee plantations are better bat habitat than tea plantations in biodiversity hotspots. However, if tea is to be the dominant land use, forest fragments and riparian corridors can improve the landscape considerably for bats. We encourage coffee growers to retain traditional plantations with mature native trees, rather than reverting to sun grown coffee or coffee shaded by a few species of timber trees.  相似文献   

10.
Data on the response of bird communities to surface mining and habitat modification are limited, with virtually no data examining the effects of mining on bird communities in and along riparian forest corridors. Bird community composition was examined using line transects from 1994 to 2000 at eight sites within and along a riparian forest corridor in southwestern Indiana that was impacted by an adjacent surface mining operation. Three habitats were sampled: closed canopy, riparian forest with no open water; fragmented canopy, riparian forest with flood plain oxbows; and reclaimed mined land with constructed ponds. Despite shifts in species composition, overall bird species richness, measured as the mean number of bird species recorded/transect route, did not differ among habitats and remained unchanged across years. More species were recorded solely on mined land than in either closed forest or forested oxbow habitats. Mined land provided stopover habitat for shorebirds and waterfowl not recorded in other habitats, and supported an assemblage of grassland-associated bird species weakly represented in the area prior to mining. A variety of wood warblers and other migrants were recorded in the forest corridor throughout the survey period, suggesting that, although surface mining reduced the width of the forest corridor, the corridor was still important habitat for movement of forest-dependent birds and non-resident bird species in migration. We suggest that surface mining and reclamation practices can be implemented near riparian forest and still provide for a diverse assemblage of bird species. These data indicate that even narrow (0.4 km wide) riparian corridors are potentially valuable in a landscape context as stopover habitats and routes of dispersal and movement of forest-dependent and migratory bird species.  相似文献   

11.
Abstract. As part of a larger survey of biodiversity in gardens in Sheffield, UK, we examined the composition and diversity of the flora in two 1‐m2 quadrats in each of 60 gardens, and compared this with floristic data from semi‐natural habitats in central England and derelict urban land in Birmingham, UK. Garden quadrats contained more than twice as many taxa as those from any other habitat type. Ca. 33 % of garden plants were natives and 67 % aliens, mainly from Europe and Asia. A higher proportion of garden aliens originated from Asia and New Zealand than in the UK alien flora as a whole; 18 of the 20 most frequent plants in garden quadrats were natives, mostly common weeds. Garden quadrats showed no evidence of ‘nestedness’, i.e. a tendency for scarce species to be confined to the highest diversity quadrats. Conversely, species in all semi‐natural and derelict land data sets were significantly nested. Compared to a range of semi‐natural habitats, species richness of garden quadrats was intermediate, and strikingly similar to the richness of derelict land quadrats. Although species accumulation curves for all other habitats showed signs of saturation at 120 quadrats, gardens did not. Correlations between Sørensen similarity index and physical distance were insignificant for all habitat types, i.e. there was little evidence that physical distance played any part in structuring the composition of the quadrats in any of the data sets. However, garden quadrats were much less similar to each other than quadrats from semi‐natural habitats or derelict land.  相似文献   

12.
阳文锐  李婧  闻丞  黄越  顾燚芸  朱洁  唐燕 《生态学报》2022,42(20):8213-8222
高强度的城市化活动导致了生物栖息地破碎化、退化和消失,是生物多样性减少的主要原因。建立城市地区生态网络是保护生物多样性的重要途径。因其他物种数据可获得性差,以观测的典型鸟类群落为指示物种,探讨构建生态网络,可为城市生物多样性保护提供新思路。以北京市平原区为研究范围,重点基于86种鸟类分布大数据,通过Maxent模型掩膜生成栖息地源地并进行分级,在GIS技术的支撑下,以土地利用数据建立鸟类活动阻力面,采用最小累积阻力模型算法,模拟并形成了平原地区分级的生物多样性保护网络。研究结果表明,河湖湿地和城市公园组成了北京平原地区生态网络的优势景观类型,占平原区生态空间的81%。基于景观类型大小与物种数量的线性关系筛选出分级生物栖息地,其中一级生物栖息地58个,二级生物栖息地146个,通过模型模拟形成了平原地区生物多样性保护的一二级生态网络,共948条网络,长3760km。筛选出重要生态节点12处,关键生态廊道6条,是保护平原地区生物多样性的重要生态设施。该生态网络的实施对于提升首都平原区的生物多样性具有重要价值,研究结果可为国土生态空间优化提供重要科学依据和参考。  相似文献   

13.
Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds, rodents, and mammalian carnivores) individually and for all groups combined along a riparian-upland gradient in semiarid southeastern Arizona, USA. Additionally, we assessed whether biological characteristics could explain variation in diversity along the gradient using five traits (trophic level, body size, life span, thermoregulatory mechanism, and taxonomic affiliation). At the level of individual groups diversity patterns varied along the gradient, with some having greater richness and/or abundance in riparian zones whereas others were more diverse and/or abundant in upland zones. Across all taxa combined, riparian zones contained significantly more species than the uplands. Community similarity between riparian and upland zones was low, and beta diversity was significantly greater than expected for most taxonomic groups, though biological traits explained little variance in diversity along the gradient. These results indicate heterogeneity amongst taxa in how they respond to the factors that structure ecological communities in riparian landscapes. Nevertheless, across taxonomic groups the overall pattern is one of greater species richness and abundance in riparian zones, coupled with a distinct suite of species.  相似文献   

14.
Understanding varying levels of biodiversity within cities is pivotal to protect it in the face of global urbanisation. In the early stages of urban ecology studies on intra‐urban biodiversity focused on the urban–rural gradient, representing a broad generalisation of features of the urban landscape. Increasingly, studies classify the urban landscape in more detail, quantifying separately the effects of individual urban features on biodiversity levels. However, while separate factors influencing biodiversity variation among cities worldwide have recently been analysed, a global analysis on the factors influencing biodiversity levels within cities is still lacking. We here present the first meta‐analysis on intra‐urban biodiversity variation across a large variety of taxonomic groups of 75 cities worldwide. Our results show that patch area and corridors have the strongest positive effects on biodiversity, complemented by vegetation structure. Local, biotic and management habitat variables were significantly more important than landscape, abiotic or design variables. Large sites greater than 50 ha are necessary to prevent a rapid loss of area‐sensitive species. This indicates that, despite positive impacts of biodiversity‐friendly management, increasing the area of habitat patches and creating a network of corridors is the most important strategy to maintain high levels of urban biodiversity.  相似文献   

15.
16.
Broad-scale modification of natural ecosystems associated with urbanisation often leads to localised extinctions and reduced species richness. Despite this, habitats within the urban matrix are still capable of supporting biodiversity to varying degrees. As species have different responses to anthropogenic habitat modification, the species composition of urban areas can depend greatly on the habitat characteristics of the local and surrounding areas. The aim of this study was to compare the community composition of spiders in private gardens, urban parks, patches of remnant vegetation and continuous bushland sites, so as to identify habitat variables associated with variation in spider populations along and within the urban gradient and matrix. Overall spider abundances and richness were highest in remnant vegetation patches and were associated with increased vegetation cover at microhabitat and landscape-scales. While gardens were not as diverse as remnant patches, they did support a surprisingly high diversity of spiders. We also found that species composition differed significantly between gardens and other urban green spaces. Higher richness within gardens was also associated with greater vegetation cover, indicating the importance of private management decisions on local biodiversity. Differences in community composition between land-use types were driven by a small number of urban-tolerant species, and spider guilds showed different responses to habitat traits such as vegetation cover and human population densities. This study demonstrates that urban land-uses support unique spider communities and that maintaining vegetation cover within the urban matrix is essential in order to support diverse spider communities in cities.  相似文献   

17.
Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011–2013), mist‐netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human‐dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest.  相似文献   

18.
Urbanization poses a serious threat to local biodiversity, yet towns and cities with abundant natural features may harbor important species populations and communities. While the contribution of urban greenspaces to conservation has been demonstrated by numerous studies within temperate regions, few consider the bird communities associated with different landcovers in Neotropical cities. To begin to fill this knowledge gap, we examined how the avifauna of a wetland city in northern Amazonia varied across six urban landcover types (coastal bluespace; urban bluespace; managed greenspace; unmanaged greenspace; dense urban; and sparse urban). We measured detections, species richness, and a series of ground cover variables that characterized the heterogeneity of each landcover, at 114 locations across the city. We recorded >10% (98) of Guyana's bird species in Georgetown, including taxa of conservation interest. Avian detections, richness, and community composition differed with landcover type. Indicator species analysis identified 29 species from across dietary guilds, which could be driving community composition. Comparing landcovers, species richness was highest in managed greenspaces and lowest in dense urban areas. The canal network had comparable levels of species richness to greenspaces. The waterways are likely to play a key role in enhancing habitat connectivity as they traverse densely urbanized areas. Both species and landcover information should be integrated into urban land-use planning in the rapidly urbanizing Neotropics to maximize the conservation value of cities. This is imperative in the tropics, where anthropogenic pressures on species are growing significantly, and action needs to be taken to prevent biodiversity collapse.  相似文献   

19.
Streams and adjacent riparian habitats represent linked terrestrial and aquatic ecosystems that exchange materials and energy. Recognized relationships among apex predators and ecosystem biodiversity led us to hypothesize that these predators in riparian‐stream systems were more likely to be found in sites with high stream quality, defined as increased ecosystem function and integrity. In our freshwater study system, river otter Lontra canadensis and mink Neovison vison play critical roles as apex predators. We used multi‐season occupancy modelling across three sampling years (2012–2014) to compare aspects of the stream communities that explain occupancy dynamics of river otter and mink, including their interactions with other semi‐aquatic mammals. We surveyed for semi‐aquatic mammals at 77 sites in 12 major watersheds in southern Illinois, USA (44 526 km2). Naïve occupancy differed among years but generally increased for river otter, and remained high (≥93.5%) for mink. Increasing substrate availability increased detectability of river otter, whereas mink detection varied by survey period. Occupancy of river otter during the initial survey period was higher in sites closer to reintroduction points. Probability of colonization of river otter was positively associated with macroinvertebrate index of biotic integrity, fish species richness, and beaver presence. Sites with high species richness of fish families preferred by river otter also had increased river otter persistence. Mink occupied sites with increased fish richness, muskrat presence and mussel community index. Taken together, our results show occupancy of both mink and river otter were predicted by aspects of prey diversity and presence, indicating the importance of community composition in occupancy dynamics of riparian predators. Ultimately, these relationships suggest that habitat heterogeneity and system stability are important to apex predator site use. However, the relative role of bottom–up and top–down forcing in stream systems remains to be resolved.  相似文献   

20.
实现有效生物多样性保护的关键在于提升生物多样性丰富的人口密集区的保护效率。北京人口密集且生物多样性丰富, 存在3类具有生态保护功能的区划——自然保护区、生态保护红线和限制建设线。上述区域可视为生态保护潜力区。本文以在北京有分布的30种受胁鸟类为主要对象, 探讨现有生态保护潜力区对这些物种栖息地的覆盖程度, 并对如何改善上述受胁鸟类栖息地的保护状况进行了建议。根据物种对栖息地的选择, 基于高分辨率卫星解译的土地利用类型图, 利用最大熵模型(MaxEnt)掩膜栖息地分布图, 得到各受胁鸟类的预测空间分布。叠加这些分布获得北京受胁鸟类丰富度分布格局并进行验证。依据物种丰富度高低, 将受胁鸟类栖息地划分为一至四级(最重要的栖息地是一级栖息地, 以此类推)。同时, 依据地表覆盖类型和人类活动强度高低将北京市域划分为城市建成区、乡村生境区和自然生境区。分别计算3类保护潜力区对上述3类区域以及四级栖息地的覆盖面积比例。结果表明: (1) 95.64%的一级关键栖息地和86.32%的二级关键栖息地分布在乡村生境区, 但仅有0.69%和15.15%的乡村生境区分别被自然保护区和生态保护红线覆盖; (2)未受到自然保护区和生态保护红线覆盖的一、二级关键栖息地主要为水域和沼泽地等湿地、高覆盖度草地和部分耕地, 以及含有较高比例水体的大型城市绿地。基于以上结果, 我们建议至少在一定区域内试行如下保护措施: (1)严格保护湿地及其周边的高覆盖度草地, 确保面积不减少; (2)维持基本农田规模和粮食种植模式; (3)将乡村生境区位于河道附近的水域、沼泽地、高覆盖草地和灌木林纳入生态保护红线范围; (4)在公园绿地中划定生物多样性保护区; (5)优化平原地区林地结构。以上措施将使北京的受胁鸟类栖息地得到更好保护, 为中国东部人口密集区生物多样性保护提供示范。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号