首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urbanization and urban landscape characteristics greatly alter plant and animal species richness and abundances in negative and positive directions. Spiders are top predators, often considered to be sensitive to habitat alteration. Studies in urban environments frequently focus on ground-dwelling spiders or on spiders in built structures, leaving aside foliage spiders. Effects of habitat, landscape type and structure and local characteristics on spider species composition, richness and relative abundance were evaluated in urban green patches in a temperate city of South America. We also assess whether Salticidae could be an indicator group for the broader spider community in the urban environment. Spiders were sampled with a G-VAC (aspirator) in urban green patches in Córdoba city, Argentina, in urban, suburban and exurban habitats (18 sites; six per habitat) and local and landscape traits were assessed. Overall, the exurban was richer than the urban habitat, however, at the site level Salticidae richness and abundance (but not the total spider assemblage) were significantly lower in urban sites. Species composition moderately differed between urban and exurban sites. Results indicate that on urban green spaces a low impervious surface cover, a coverage of trees, herbaceous vegetation and a vertical structure of vegetation at least up to 1 m in height contribute to higher richness and abundance of spiders, Salticidae being more sensitive than the overall spider community to local effects. In addition, Salticidae richness can predict 74% of the total spider richness recorded and may be used as spider diversity bio-indicators in this climatic region.  相似文献   

2.
Spiders (Araneae) play key roles in ecosystems, not only as common and abundant generalist predators, but also as major contributors to biodiversity in many areas. In addition, due to their short generation times and high mobility, spiders respond rapidly to small changes in their environment, potentially making them useful indicators for restoration monitoring. However, few studies have focused on spider responses to grassland restoration in the United States. We compared degraded, native, and restored grassland sites to examine how spider communities and habitat respond to arid grassland restoration. We also examined how responses varied with the age of the restoration project. Spider communities in native sites differed from those in restored and degraded sites in several ways: native sites had fewer spiders and a different community composition than degraded and restored sites. However, native and restored sites had more species than degraded sites. Chronosequence data showed trends for lower abundance, higher species richness, and changing community composition as restoration projects mature. Several habitat variables were closely linked to variation in spider communities including cover of invasive annual grasses, litter, and biological soil crusts. Our data suggest that spider and vegetation responses to grassland restoration efforts can be successful in the long term—with resulting communities becoming more similar to native ones—and that spiders are useful indictors of grassland restoration. Our results also suggest that restoration may involve balancing trade‐offs between ecosystem services, with potential losses in predatory control offset by increases in biodiversity with restoration effort.  相似文献   

3.
Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island size, indicating that the creation of quite small but diversified (e.g., differing in vegetation cover) non-crop habitat islands could be the most efficient tool for the maintenance and enhancement of diversity of ground-dwelling carabids and spiders in agricultural landscapes.  相似文献   

4.
Habitat structure determines spider diversity in highland ponds   总被引:1,自引:0,他引:1  
Wetlands (e.g. ponds, meadows) can be found in many landscapes, playing an important role in maintaining regional biodiversity and supporting heterogeneous communities. Spiders are diversified predators that are highly influenced by changes in plant community structure, heterogeneous habitats sustain high spider diversity and abundance. We investigated the characteristics of spider biodiversity in ponds with different habitat structures, by examining patterns across habitats of ponds with different vegetation levels. Sampling took place in four occasions over a year. We compared spider abundance, species richness and composition among ponds including distinct vegetation variables, related to life form, type of leaves, coverage and height. Overall 1174 individuals (194 adults) of 11 families and 37 morphospecies were sampled. We found mostly expected differences in the manner that communities were structured between different habitats. Thus, higher variability of abundance was explained for higher habitat structure of ponds. We also found differences in species composition between ponds with low emergent vegetation and higher habitat structures. Additionaly, spiders were consistently structured more by turnover than nestedness components, with a greater beta diversity of web-builders. Our results suggest varying levels of habitat structures and species substitution shape pond spider communities, depending on habitat heterogeneity and spider guild. Those findings demonstrate the clear role of spatial habitat structure, with more spider species preferring to build webs or actively hunt at vegetated environments on ponds.  相似文献   

5.
Previous studies suggest that urbanization alters the abundance and species richness of native insects on remnant habitat patches. However, the effects of urbanization on biological communities caused by habitat loss and fragmentation have not been separated from effects caused by altered habitat quality within remnant habitats or by the nature of the urban matrix. To test for an effect of urbanization acting via altered habitat quality or matrix characteristics, we controlled for the effects of habitat loss and fragmentation by comparing remnant habitat patches in urban and agricultural regions experiencing similar levels of habitat loss and fragmentation. We studied the species richness and abundance of the community of leaf-mining Lepidoptera on Quercus agrifolia in the San Francisco Bay Area. We measured the extent of five land-use types within a 500 m radius of each study patch. We built generalized linear models to determine if the extent of any of the landscape variables was associated with the species richness and abundance of the leaf-miner community. The extent of urbanization was not associated with species richness or total abundance. However, the abundance of three species of leaf-mining moths was associated with the extent of urbanization, but not in a consistent pattern. The abundances of Stigmella variella and Bucculatrix albertiella were higher and the abundance of Dryseriocrania auricyanea was lower at highly urbanized sites. The absence of a consistent association between urban land-use and both species richness and abundance indicates that the effects of urbanization on the community of leaf-mining moths of Q. agrifolia do not differ from the effects of replacing and fragmenting habitats with similar amounts of agricultural land-uses.  相似文献   

6.
Agricultural intensification typically leads to changes in bird diversity and community composition, with fewer species and foraging guilds present in more intensively managed parts of the landscape. In this study, we compare bird communities in small (2–32 ha) brigalow (Acacia harpophylla) remnants with those in adjacent uncultivated grassland, previously cultivated grassland and current cropland, to determine the contribution of different land uses to bird diversity in the agricultural landscape. Twenty remnant brigalow patches and adjacent agricultural (‘matrix’) areas in southern inland Queensland, Australia were sampled for bird composition and habitat characteristics. The richness, abundance and diversity of birds were all significantly higher in brigalow remnants than in the adjacent matrix of cropping and grassland. Within the matrix, species richness and diversity were higher in uncultivated grasslands than in current cultivation or previously cultivated grasslands. Forty-four percent of bird species were recorded only in brigalow remnants and 78% of species were recorded in brigalow and at least one other land management category. Despite high levels of landscape fragmentation and modification, small patches of remnant brigalow vegetation provide important habitat for a unique and diverse assemblage of native birds. The less intensively managed components of the agricultural matrix also support diverse bird assemblages and thus, may be important for local and regional biodiversity conservation.  相似文献   

7.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

8.
2004年4—10月,在甘肃子午岭天然次生林区采用巴氏诱罐法采集土壤蜘蛛2164头,隶属于19科43种。研究表明辽东栎林(Quercusliaotungensis)、油松林(Pinustabulaeformis)和杨树林(Populusdavidiana)3种森林植被类型中土壤蜘蛛群落组成有明显的差异;不同生境蜘蛛群落的组成成分和多样性指数各异;从各生境中捕获的蜘蛛个体数量分析,皿蛛科、平腹蛛科和科狼蛛科的数量最多,优势类群的组成相似;各生境类型中蜘蛛功能集团的组成及多样性也有明显差异。同时,分析了影响蜘蛛群落组成和多样性的主要因子是生境的植被类型和生境异质性。  相似文献   

9.
Upland calcareous grassland landscapes are typically comprised of a matrix of calcareous grassland, acid grassland and limestone heath plant communities. This matrix of habitats is produced by a combination of underlying geology, climate and management. These landscapes are typically managed through grazing, with management targeted to maintain particular plant communities in the calcareous grassland habitat, whilst patches of acid grassland and limestone heath are not targeted by conservation management. The biodiversity value of acid grassland and limestone heath patches within the calcareous grassland matrix are unknown. This study provides the first assessment of their biodiversity value by examining aspects of epigeal spider diversity supported by these non-target habitat patches in comparison to calcareous grassland. Spiders were sampled in each habitat from April to August 2014 using pitfall traps across three upland regions in Great Britain. Spider species assemblages were distinct between limestone heath and both grassland types. Distinction in species assemblages are likely due to differences in vegetation structure and microclimate, e.g., humidity, degree of shade. Each habitat type supported several rare species (e.g., Jacksonella falconeri, Agyneta subtilis) revealing the contribution to spider fauna. The distinct spider species assemblage and presence of rare species in limestone heath patches demonstrate their importance in the upland calcareous grassland matrix. This study highlights the value of monitoring biodiversity in non-target habitats within a habitat matrix alongside those that are actively targeted by management.  相似文献   

10.
Over the last two centuries wet heathlands and associated habitats, such as poor fens and bogs, have suffered extensive fragmentation. Recently, large-scale projects aim to restore these rare habitats throughout Europe. To evaluate post-restoration trajectories of wet heathlands, suitable monitoring tools are urgently needed. Here, we investigated whether spider communities are useful tools for evaluating the restoration success of wet heathlands. Ordination revealed that dissimilarity in spider communities between patches of different age classes resulted mainly from vegetation cover and soil moisture. By using a functional trait-approach, we tested if the time since restoration affects trait distribution of spiders in wet heathlands. Typical wet heathland spider species were less common with increasing vegetation encroachment and lower water content. New patches were inhabited by summer active, eurytopic (non-heathland) spiders, while more typical heathland species were found in middle-aged and old patches. Our results suggest that time-related changes in vegetation structure and moistness of restored wet heathlands are clearly reflected by spider communities. Although mobile spiders quickly recolonize the restored heathlands, it takes time for typical heathland spiders to settle. Restoration measures should prevent the negative effects of a vegetation encroachment and a high density of forested edges and should rehabilitate the hydrological cycle in order to preserve rare heathland spiders. We discuss that accounting for responses of spiders provides additional information to guide wet heathlands restoration.  相似文献   

11.
A study of spider (Araneae) communities was conducted in rehabilitated bauxite mines at the Jarrahdale mine site of Alcoa of Australia Ltd. and in the nearby native jarrah (Eucalyptus marginata) forest in southwest Western Australia. The study was conducted from March to August 1993 in five rehabilitated sites of different age and method of rehabilitation and in two forest sites. A variety of collection methods was used, including pitfall trapping, litter sampling, sweep netting, tree beating, and visual searching. These methods were the same as those carried out in a previous study of some of these areas in 1983. We collected 151 spider species belonging to 102 genera and 34 families. We examined the relationship between various habitat features, including the age and method of rehabilitation, of the spider communities present. It was found that leaf litter depth and cover and vegetation density had a significant positive influence on recolonization by the various spider guilds. The age and method of rehabilitation were found to influence different vegetational and habitat features; these, in turn, influenced the spider communities. Thus, the older a rehabilitated site the greater the species richness of both plants and spiders. We compared these results with those of the 1983 study to determine the spider succession of the aging rehabilitation. The spider communities and guild composition were found to change as the vegetation matured, from a dominance of pioneer species to a community of species requiring less harsh conditions. By comparison with the pre-1983 rehabilitation, the latest method of rehabilitation increased the rate of recolonization by both plants and spiders.  相似文献   

12.
The benefits of low input farming on biodiversity and ecosystem services are already well-established, however most of these studies focus only on the focal field scales. We aimed to study whether these benefits exist at the whole farm scale, to find the main environmental driving effects on biodiversity at the whole farm scale in farms of different grassland grazing intensity, applying three well-known species diversity indicator groups of different ecological traits.Edaphic (earthworms), epigeic (spiders) and flying (bees) taxa were sampled in each identified habitat type within 18 low-input farms in Central Hungary, 2010. The number of habitat types, the number of grassland plots, the cumulative area of grasslands and habitat type had an effect on the species richness and abundance of spiders, while grassland grazing intensity influenced the species richness of bees. Both bees and spiders were sensitive to vegetation and weather conditions, resulting in more bees on flower-rich farms and those having higher temperature; and more spiders on farms with more heterogeneous vegetation structure and in low-wind areas. Relatively few earthworms were found in the whole study, and their abundance was not influenced by any of the farm composition and management variables.We conclude that local field management (grazing intensity of grassland patches) can have a farm scale effect, detectable on species diversity indicators that have high dispersal ability and strong connection to grasslands as important foraging sites (bees). However, other farmland biota (spiders) is also strongly determined by farmland composition and habitat diversity, therefore the maintenance of a mosaic within-farm habitat structure is strongly recommended. The application of earthworms as farmland composition or management indicators is strongly restricted because of their special needs of soil conditions.  相似文献   

13.
Spatial variation in biodiversity is one of the key pieces of information for the delimitation and prioritisation of protected areas. This information is especially important when the protected area includes different climatic and habitat conditions and communities, such as those along elevational gradients. Here we test whether the megadiverse communities of spiders along an elevational gradient change according to two diversity models – a monotonic decrease or a hump-shaped pattern in species richness. We also measure compositional variation along and within elevations, and test the role of the preference of microhabitat (vegetation strata) and the functional (guild) structure of species in the changes. We sampled multiple spider communities using standardised and optimised sampling in three forest types, each at a different elevation along a climatic gradient. The elevational transects were at increasing horizontal distances (between 0.1 and 175 km) in the Udzungwa Mountains, Eastern Arc Mountains, Tanzania. The number of species was similar between plots and forest types, and therefore the pattern did not match either diversity model. However, species composition changed significantly with a gradual change along elevations. Although the number of species per microhabitat and guild also remained similar across elevations, the number of individuals varied, e.g. at higher elevations low canopy vegetation was inhabited by more spiders, and the spiders belonging to guilds that typically use this microhabitat were more abundant. Our findings reflex the complex effects of habitat-microhabitat interactions on spider communities at the individual, species and guild levels. If we aim to understand and conserve some of the most diverse communities in the world, researchers and managers may need to place more attention to small scale and microhabitat characteristics upon which communities depend.  相似文献   

14.
Riparian forests bordering open terrestrial environments may have three microhabitats differing in structure and conditions: a grassland/pasture-forest edge (GE), a forest interior (FI) and a river–forest edge. The influence of such edge effects and vegetation characteristics on spider diversity of riparian forests was evaluated in Southern Brazil. Four different rivers were sampled on the tree–shrub strata with a beating tray, twice per season for 2 years. There were six transects per river, two per microhabitat. We compared spider abundance, species richness and composition. Vegetation variables sampled were vertical structure and (horizontal) density, canopy height and cover. Overall 42,057 spiders were sampled, 28 spider families and 440 species. The FI had higher spider abundance than the edges. Average species richness differed among rivers. Microhabitats did not differ in average richness, although overall richness (from sample-based rarefaction) was higher for GE than FI. High abundances in FI may result from lowered stress due to abiotic conditions, while higher GE richness may result from a faunal superposition between forest species and those from the grassland/pasture. Only canopy cover returns a positive relationship with spider diversity (richness and adult abundance). This might result from more spider species preferring to build webs or hunt under low-light environments. Rivers had spider faunas differing in composition but among microhabitats species composition was the same. Vegetation structure has been hypothesized to affect spiders, but this impact might be best seen in specific subgroups or guilds within spiders, not in the whole assemblage.  相似文献   

15.
Urbanization is one of the most extreme and rapidly growing anthropogenic pressures on the natural world. It is linked to significant impacts on biodiversity and disruptions to ecological processes in remnant vegetation. We investigated the richness and abundance of wasps in a highly fragmented urban landscape in Sydney, Australia, comparing assemblages in small urban remnants to edges and interiors of continuous areas of vegetation. We detected no difference in wasp abundance or species richness between remnant types indicating that communities are highly resilient to the effects of urbanization at this scale. However, Chao 2 estimates of predicted species richness indicate that edge sites would support a greater richness and abundance of species compared to small and interior sites. Although families were represented evenly across the sites, interior and edge sites supported more species within families. Wasp composition was significantly affected by the temporal variation and trap location (arboreal or ground), particularly at the family level demonstrating high species turnover and discrimination in vertical space. These sampling effects and temporal inconsistencies highlight the hazards of relying on one-off snapshot surveys and uncorrected datasets for assessments of diversity and responses to urban landscapes. The strong resilience of wasp communities to urbanization when assessed at coarse scales indicates that responses at finer spatial and taxonomic scales are critical to understanding the maintenance of ecosystem function in highly modified landscapes.  相似文献   

16.
Capsule Different urban breeding bird communities are associated with different habitat types, but, although community species diversity varies significantly, total bird density does not.

Aims To investigate the association between breeding bird communities and habitats within Bristol, UK and how these communities vary in terms of species diversity and total bird abundance.

Methods Breeding density data for 70 species in the metropolitan area of Bristol, UK were subjected to de‐trended correspondence analysis to identify the number of different communities present and their indicator species. These data were then used to identify patterns of habitat association with each community and differences in species richness and total bird density.

Results Three communities were identified: a rural community associated with woodland, managed grassland and inland water; a suburban community associated with buildings and residential gardens; and an intermediate community that shared some of these habitat characteristics. Species richness, but not total bird abundance, was lowest in the suburban community.

Conclusion The diversity of species in urban areas appears to be most dependent upon the availability of patches of natural and semi‐natural habitats. Residential gardens support fewer species, but those species that are present may be found at high densities.  相似文献   

17.
Conversion of natural habitats to oil palm agriculture has caused declines in biodiversity and changes in ecosystem functions. To preserve biodiversity we must protect natural habitats, but once oil palm plantations are established, developing more-environmentally friendly management strategies could support higher levels of within-plantation biodiversity and boost the delivery of ecosystem services, possibly increasing oil palm productivity. In this study, we use a before-after control-impact (BACI) experiment to test whether three understory vegetation management strategies affect spider abundance, species richness, and species-level community composition in canopy and ground microhabitats in mature oil palm plantations. Our treatments encompassed the range of current management practices and included heavy applications of herbicides to eliminate all understory vegetation, maintaining some understory vegetation using business-as-usual herbicide applications, and enhancing understory vegetation by not applying any herbicides. We focussed on spiders, as they are both biologically and economically important in oil palm plantations, owing to their important pest control services. We identified more than 1000 spiders, representing 20 families and 83 morphospecies. The treatments did not affect any aspects of spider biodiversity, although the abundance and species richness of canopy-dwelling spiders changed between pre- and post-treatment sample periods, independent of treatment. Our findings indicate that differences in understory vegetation management practices do not affect spiders, or the pest management services that they provide, in mature oil palm plantations. As such, more extreme changes in management would probably be required to enhance spider biodiversity in oil palm plantations in the long-term. Further studies are needed to determine the practicalities of such approaches, to assess how changes in vegetation management practices affect spiders in additional microhabitats, and how the impacts of such approaches vary across the 20–30 year oil palm commercial life cycle.  相似文献   

18.
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation.  相似文献   

19.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   

20.
刘继亮  赵文智  李锋瑞  巴义彬 《生态学报》2020,40(21):7987-7996
干旱区人工植被恢复驱动的土地利用变化强烈影响了地表和土栖的节肢动物群落结构及多样性。然而,我们对地表节肢动物群落关键类群-蜘蛛和甲虫对固沙植被恢复的响应及与环境变化关系的认识还很有限。以天然固沙灌木林和2种人工固沙灌木林为研究对象,运用方差分析和多变量分析等方法定量研究了干旱区天然和人工固沙植被区地表蜘蛛和甲虫分布特征及影响要素。结果表明,天然灌木林与人工梭梭、柽柳林地表蜘蛛和甲虫群落组成明显不同,人工梭梭、柽柳林地表蜘蛛活动密度和甲虫多样性均显著高于天然灌木林,而地表甲虫密度和蜘蛛多样性变化与之相反。两种人工固沙灌木林之间蜘蛛和甲虫群落组成也存在一定差异,人工柽柳林地表蜘蛛活动密度、多样性和甲虫物种丰富度均显著高于人工梭梭林。进一步分析发现,蜘蛛群落中狼蛛科、平腹蛛科、皿蛛亚科和球蛛科与甲虫群落中拟步甲科、步甲科和象甲科等一些甲虫种属对3种生境的选择模式不同决定了蜘蛛和甲虫群落聚集结构。植被、土壤环境因子与蜘蛛和甲虫pRDA和pCCA结果表明,草本生物量、凋落物量、土壤含砂量、电导率和灌木盖度是影响蜘蛛分布的主要环境因子,它们解释了82.1%的蜘蛛群落变异;灌木盖度、草本生物量、土壤pH和砂含量是影响甲虫群落分布的主要环境因子,它们解释了60.6%的甲虫群落变异。总之,人工固沙灌木恢复影响了植被和土壤环境,它们相互作用改变了荒漠-绿洲过渡区蜘蛛和甲虫等地表节肢动物的分布格局。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号