首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until the recent discovery of pRF in Rickettsia felis, the obligate intracellular bacteria of the genus Rickettsia (Rickettsiales: Rickettsiaceae) were thought not to possess plasmids. We describe pRM, a plasmid from Rickettsia monacensis, which was detected by pulsed-field gel electrophoresis and Southern blot analyses of DNA from two independent R. monacensis populations transformed by transposon-mediated insertion of coupled green fluorescent protein and chloramphenicol acetyltransferase marker genes into pRM. Two-dimensional electrophoresis showed that pRM was present in rickettsial cells as circular and linear isomers. The 23,486-nucleotide (31.8% G/C) pRM plasmid was cloned from the transformant populations by chloramphenicol marker rescue of restriction enzyme-digested transformant DNA fragments and PCR using primers derived from sequences of overlapping restriction fragments. The plasmid was sequenced. Based on BLAST searches of the GenBank database, pRM contained 23 predicted genes or pseudogenes and was remarkably similar to the larger pRF plasmid. Two of the 23 genes were unique to pRM and pRF among sequenced rickettsial genomes, and 4 of the genes shared by pRM and pRF were otherwise found only on chromosomes of R. felis or the ancestral group rickettsiae R. bellii and R. canadensis. We obtained pulsed-field gel electrophoresis and Southern blot evidence for a plasmid in R. amblyommii isolate WB-8-2 that contained genes conserved between pRM and pRF. The pRM plasmid may provide a basis for the development of a rickettsial transformation vector.  相似文献   

2.
3.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

4.
Rickettsia are obligate intracellular pathogens transmitted by arthropod vectors. The re-emergence of several rickettsioses imposes severe global health burden. In addition to the well-established rickettsial pathogens, newer rickettsial species and their pathogenic potentials are being uncovered. There are many reports of spotted and typhus fever caused by rickettsiae in India. Hence, in this study we screened the ectoparasites of pet and domestic animals for the presence of rickettsia using polymerase chain reaction. Nine cat flea samples (Ctenocephalides felis felis), that tested positive for the presence of rickettsia were subjected to Multi Locus Sequence Typing. Nucleotide sequencing and Phylogenetic analysis of gltA, ompB and 16rrs genes revealed that the rickettsiae detected in cat fleas was Rickettsia asembonensis. Further studies are required to assess Rickettsia asembonensis pathogenic potential to human and its enzootic maintenance of in various hosts and vectors.  相似文献   

5.
Analysis of the peptidoglycan of Rickettsia prowazekii.   总被引:1,自引:0,他引:1       下载免费PDF全文
In the present study, peptidoglycan from Rickettsia prowazekii, an obligate intracellular bacterium, was purified. The rickettsial peptidoglycan is like that of gram-negative bacteria; that is, it is sodium dodecyl sulfate insoluble, lysozyme sensitive, and composed of glutamic acid, alanine, and diaminopimelic acid in a molar ratio of 1.0:2.3:1.0. The small amount of lysine found in the peptidoglycan preparation suggests that a peptidoglycan-linked lipoprotein(s) may be present in the rickettsiae. D-Cycloserine, a D-alanine analog which inhibits the biosynthesis of bacterial cell walls, prevented rickettsial growth in mouse L929 cells at a high concentration and altered the morphology of the rickettsiae at a low concentration. These effects were prevented by the addition of D-alanine. This suggests that R. prowazekii contains D-alanine in the peptidoglycan and has D-Ala-D-Ala ligase and alanine racemase activities.  相似文献   

6.
The recently sequenced Rickettsia felis genome revealed an unexpected plasmid carrying several genes usually associated with DNA transfer, suggesting that ancestral rickettsiae might have been endowed with a conjugation apparatus. Here we present the genome sequence of Rickettsia bellii, the earliest diverging species of known rickettsiae. The 1,552,076 base pair–long chromosome does not exhibit the colinearity observed between other rickettsia genomes, and encodes a complete set of putative conjugal DNA transfer genes most similar to homologues found in Protochlamydia amoebophila UWE25, an obligate symbiont of amoebae. The genome exhibits many other genes highly similar to homologues in intracellular bacteria of amoebae. We sought and observed sex pili-like cell surface appendages for R. bellii. We also found that R. bellii very efficiently multiplies in the nucleus of eukaryotic cells and survives in the phagocytic amoeba, Acanthamoeba polyphaga. These results suggest that amoeba-like ancestral protozoa could have served as a genetic “melting pot” where the ancestors of rickettsiae and other bacteria promiscuously exchanged genes, eventually leading to their adaptation to the intracellular lifestyle within eukaryotic cells.  相似文献   

7.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that replicates only within the cytosol of a eukaryotic host cell. Despite the barriers to genetic manipulation that such a life style creates, rickettsial mutants have been generated by transposon insertion as well as by homologous recombination mechanisms. However, progress is hampered by the length of time required to identify and isolate R. prowazekii transformants. To reduce the time required and variability associated with propagation and harvesting of rickettsiae for each transformation experiment, characterized frozen stocks were used to generate electrocompetent rickettsiae. Transformation experiments employing these rickettsiae established that fluorescent rickettsial populations could be identified using a fluorescence activated cell sorter within one week following electroporation. Early detection was improved with increasing amounts of transforming DNA. In addition, we demonstrate that heterogeneous populations of rickettsiae-infected cells can be sorted into distinct sub-populations based on the number of rickettsiae per cell. Together our data suggest the combination of fluorescent reporters and cell sorting represent an important technical advance that will facilitate isolation of distinct R. prowazekii mutants and allow for closer examination of the effects of infection on host cells at various infectious burdens.  相似文献   

8.
We collected a total of 169 adult hard ticks and 120 nymphs from under the leaves of plants located along tourist nature trails in ten localities. The results present data examining the vector competence of ticks of different genera and the presence of Rickettsia and Anaplasma species. The ticks belonged to three genera, Amblyomma, Dermacentor, and Haemaphysalis, comprising 11 species. Rickettsia bacteria were detected at three collection sites, while Anaplasma bacteria were detected at only one site. Phylogenetic analysis revealed new rickettsia genotypes from Thailand that were closely related to Rickettsia tamurae, Rickettsia monacensis, and Rickettsia montana. This study was also the first to show that Anaplasma bacteria are found in Haemaphysalis shimoga ticks and are closely related evolutionarily to Anaplasma bovis. These results provide additional information for the geographical distribution of tick species and tick‐borne bacteria in Thailand and can therefore be applied for ecotourism management.  相似文献   

9.
The mechanism and kinetics of intracellular growth of Rickettsia tsutsugamushi were investigated by electron microscopic observations, parallel with quantitative analysis by counting the rickettsiae seen in electron micrographs and by plaque assay for infectivity of the culture. The observations demonstrated the existence of electron-less dense and -dense types of rickettsiae in the early stage of infection, binary fission and the process of release of the microorganisms in the host cell cytoplasm and from the cell surface, formation of abnormally long rickettsiae, and the process of lysis of the host cell in the later stage of infection with vacuole formation between the inner and outer leaflets of the host cell nuclear membrane. Separate titrations of infectivity of the cells and the culture fluid showed a very slow increase in infectivity in the culture fluid compared with the intracellular titer, suggesting that the progeny rickettsiae stay in the cell or at the cell surface for a relatively long period. Doubling time of the rickettsia was found to be about 9 hr.  相似文献   

10.
The nucleotide sequence of the groE operon of Rickettsia prowazekii, the obligate intracellular parasite of eukaryotes, was determined. The alignment of DNA-inferred amino acid sequences of the Hsp10 and Hsp60 heat-shock proteins with bacterial and mitochondrial homologues revealed the presence within Hsp60 of signatures shared by mitochondria and rickettsiae. Phylogenetic analysis demonstrated that heat-shock proteins of R. prowazekii are the earliest and the least diverging homologues within the family Rickettsiaceae--a sister group to the monophyletic clade of mitochondria. These results are in good agreement with the data obtained when using other molecular chronometers and show the closest relationship between mitochondria and Rickettsia. The possible nature of obligate intracellular parasitism of rickettsiae has been considered on the basis of the assumption that they and mitochondria could have a common evolutionary origin.  相似文献   

11.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

12.
Rickettsia prowazekii, the etiological agent of epidemic typhus, is an obligate intracellular bacterium and is apparently unable to synthesize ribonucleotides de novo. Here, we show that as an alternative, isolated, purified R. prowazekii organisms transported exogenous uridyl- and guanylribonucleotides and incorporated these labeled precursors into their RNA in a rifampin-sensitive manner. Transport systems for nucleotides, which we have shown previously and show here are present in rickettsiae, have never been reported in free-living bacteria, and the usual nucleobase and nucleoside transport systems are absent in rickettsiae. There was a clear preference for the monophosphate form of ribonucleotides as the transported substrate. In contrast, rickettsiae did not transport cytidylribonucleotides. The source of rickettsial CTP appears to be the transport of UMP followed by its phosphorylation and the amination of intrarickettsial UTP to CTP by CTP synthetase. A complete schema of nucleotide metabolism in rickettsiae is presented that is based on a combination of biochemical, physiological, and genetic information.  相似文献   

13.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular parasitic bacterium that grows directly within the cytoplasm of the eucaryotic host cell. The absence of techniques for genetic manipulation hampers the study of this organism’s unique biology and pathogenic mechanisms. To establish the feasibility of genetic manipulation in this organism, we identified a specific mutation in the rickettsial rpoB gene that confers resistance to rifampin and used it to demonstrate allelic exchange in R. prowazekii. Comparison of the rpoB sequences from the rifampin-sensitive (Rifs) Madrid E strain and a rifampin-resistant (Rifr) mutant identified a single point mutation that results in an arginine-to-lysine change at position 546 of the R. prowazekii RNA polymerase β subunit. A plasmid containing this mutation and two additional silent mutations created in codons flanking the Lys-546 codon was introduced into the Rifs Madrid E strain of R. prowazekii by electroporation, and in the presence of rifampin, resistant rickettsiae were selected. Transformation, via homologous recombination, was demonstrated by DNA sequencing of PCR products containing the three mutations in the Rifr region of rickettsial rpoB. This is the first successful demonstration of genetic transformation of Rickettsia prowazekii and represents the initial step in the establishment of a genetic system in this obligate intracellular pathogen.  相似文献   

14.
Rickettsia monacensis, a spotted fever group rickettsia, was isolated from Ixodes nipponensis ticks collected from live‐captured small mammals in South Jeolla province, Korea in 2006. Homogenates of tick tissues were inoculated into L929 and Vero cell monolayers using shell vial assays. After several passages, Giemsa staining revealed rickettsia‐like organisms in the inoculated Vero cells, but not the L929 cells. Sequencing analysis revealed that the ompA‐small part (25–614 bp region), ompA‐large part (2849–4455 bp region), nearly full‐length ompB (58–4889 bp region) and gltA (196–1236 bp region) of the isolates had similarities of 100%, 99.8%, 99.3% and 99.5%, respectively, to those of R. monacensis. Furthermore, phylogenetic analysis showed that the isolate was grouped into the cluster in the same way as R. monacensis in the trees of all genes examined. These results strongly suggest that the isolate is closely related to R. monacensis. As far as is known, this is the first report of isolation of R. monacensis from ticks in Korea.  相似文献   

15.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate, intracellular, parasitic bacterium that grows within the cytoplasm of eucaryotic host cells. Rickettsiae exploit this intracellular environment by using transport systems for the compounds available in the host cell's cytoplasm. Analysis of the R. prowazekii Madrid E genome sequence revealed the presence of a mutation in the rickettsial metK gene, the gene encoding the enzyme responsible for the synthesis of S-adenosylmethionine (AdoMet). Since AdoMet is required for rickettsial processes, the apparent inability of this strain to synthesize AdoMet suggested the presence of a rickettsial AdoMet transporter. We have confirmed the presence of an AdoMet transporter in the rickettsiae which, to our knowledge, is the first bacterial AdoMet transporter identified. The influx of AdoMet into rickettsiae was a saturable process with a K(T) of 2.3 micro M. Transport was inhibited by S-adenosylethionine and S-adenosylhomocysteine but not by sinfungin or methionine. Transport was also inhibited by 2,4-dinitrophenol, suggesting an energy-linked transport mechanism, and by N-ethylmaleimide. AdoMet transporters with similar properties were also identified in the Breinl strain of R. prowazekii and in Rickettsia typhi. By screening Escherichia coli clone banks for AdoMet transport, the R. prowazekii gene coding for a transporter, RP076 (sam), was identified. AdoMet transport in E. coli containing the R. prowazekii sam gene exhibited kinetics similar to that seen in rickettsiae. The existence of a rickettsial transporter for AdoMet raises intriguing questions concerning the evolutionary relationship between the synthesis and transport of this essential metabolite.  相似文献   

16.

Background  

The ability of rickettsiae to survive in multiple eukaryotic host environments provides a good model for studying pathogen-host molecular interactions. Rickettsia typhi, the etiologic agent of murine typhus, is a strictly intracellular gram negative α-proteobacterium, which is transmitted to humans by its arthropod vector, the oriental rat flea, Xenopsylla cheopis. Thus, R. typhi must cycle between mammalian and flea hosts, two drastically different environments. We hypothesize that temperature plays a role in regulating host-specific gene expression, allowing R. typhi to survive in mammalian and arthropod hosts. In this study, we used Affymetrix microarrays to screen for temperature-induced genes upon a temperature shift from 37°C to 25°C, mimicking the two different host temperatures in vitro.  相似文献   

17.
Ticks (Acari: Ixodidae) are ubiquitous hosts of rickettsiae (Rickettsiaceae: Rickettsia), obligate intracellular bacteria that occur as a continuum from nonpathogenic arthropod endosymbionts to virulent pathogens of both arthropod vectors and vertebrates. Visualization of rickettsiae in hosts has traditionally been limited to techniques utilizing fixed tissues. We report epifluorescence microscopy observations of unfixed tick tissues infected with a spotted fever group endosymbiont, Rickettsia monacensis, transformed to express green fluorescent protein (GFP). Fluorescent rickettsiae were readily visualized in tick tissues. In adult female, but not male, Ixodes scapularis infected by capillary feeding, R. monacensis disseminated from the gut and infected the salivary glands that are crucial to the role of ticks as vectors. The rickettsiae infected the respiratory tracheal system, a potential dissemination pathway and possible infection reservoir during tick molting. R. monacensis disseminated from the gut of capillary fed I. scapularis nymphs and was transstadially transmitted to adults. Larvae, infected by immersion, transstadially transmitted the rickettsiae to nymphs. Infected female I. scapularis did not transovarially transmit R. monacensis to progeny and the rickettsiae were not horizontally transmitted to a rabbit or hamsters. Survival of infected nymphal and adult I. scapularis did not differ from that of uninfected control ticks. R. monacensis did not disseminate from the gut of capillary fed adult female Amblyomma americanum (L.), or adult Dermacentor variabilis (Say) ticks of either sex. Infection of I. scapularis with R. monacensis expressing GFP provides a model system allowing visualization and study of live rickettsiae in unfixed tissues of an arthropod host.  相似文献   

18.
Both the polyamine content and the route of acquisition of polyamines by Rickettsia prowazekii, an obligate intracellular parasitic bacterium, were determined. The rickettsiae grew normally in an ornithine decarboxylase mutant of the Chinese hamster ovary (C55.7) cell line whether or not putrescine, which this host cell required in order to grow, was present. The rickettsiae contained approximately 6 mM putrescine, 5 mM spermidine, and 3 mM spermine when cultured in the presence or absence of putrescine. Neither the transport of putrescine and spermidine by the rickettsiae nor a measurable rickettsial ornithine decarboxylase activity could be demonstrated. However, we demonstrated the de novo synthesis of polyamines from arginine by the rickettsiae. Arginine decarboxylase activity (29 pmol of 14CO2 released per h per 10(8) rickettsiae) was measured in the rickettsiae growing within their host cell. A markedly lower level of this enzymatic activity was observed in cell extracts of R. prowazekii and could be completely inhibited with 1 mM difluoromethylarginine, an irreversible inhibitor of the enzyme. R. prowazekii failed to grow in C55.7 cells that had been cultured in the presence of 1 mM difluoromethylarginine. After rickettsiae were grown in C55.7 in the presence of labeled arginine, the specific activities of arginine in the host cell cytoplasm and polyamines in the rickettsiae were measured; these measurements indicated that 100% of the total polyamine content of R. prowazekii was derived from arginine.  相似文献   

19.
Consistent with the effects of HIV on cell‐mediated immunity, an increased susceptibility to intracellular microorganisms has been observed. Rickettsiae are obligate intracellular microorganisms. The aim of this study was to examine Rickettsia typhi and Rickettsia felis infections in HIV+ population. Sera of 341 HIV+ patients were evaluated by indirect immunofluorescent assay. Age, sex, residential locality, risk behavior, stage according to criteria of the Center for Disease Control and Prevention, CD4+/CD8+ T cells, Hepatitis B antigen, and Hepatitis C serology were surveyed. Seroprevalences of R. typhi and R. felis infection were 7.6% and 4.4%, respectively. No associations were found between seropositivities and the assessed variables. Findings were similar to those obtained in healthy subjects from the same region.  相似文献   

20.
It is well known that the mite Leptotrombidium scutellare carries the pathogen of scrub typhus, Orientia tsutsugamushi. However, our understanding of other bacterial endosymbionts of mites is limited. This study investigated the diversity of the obligate intracellular bacteria carried by L. scutellare using 16S rRNA gene amplicon analysis with next-generation sequencing. The results showed that the detected bacteria were classified into the genera Rickettsia, Wolbachia, and Rickettsiella and an unknown genus of the order Rickettsiales. For further classification of the detected bacteria, a representative read that was most closely related to the assigned taxonomic classification was subjected to homology search and phylogenic analysis. The results showed that some bacteria of the genus Rickettsia were identical or very close to the human pathogens Rickettsia akari, Rickettsia aeschlimannii, Rickettsia felis, and Rickettsia australis. The genetic distance between the genus Wolbachia bacteria in the present study and in previous reports is highly indicative that the bacteria in the present study can be classified as a new taxon of Wolbachia. This study detected obligate intracellular bacteria from unfed mites; thus, the mites did not acquire bacteria from infected animals or any other infectious sources. Finally, the present study demonstrated that various and novel bacterial endosymbionts of mites, in addition to O. tsutsugamushi, might uniquely evolve with the host mites throughout overlapping generations of the mite life cycle. The roles of the bacteria in mites and their pathogenicity should be further examined in studies based on bacterial isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号