首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The UL97 protein (pUL97) of human cytomegalovirus (HCMV) is a protein kinase that also phosphorylates ganciclovir (GCV), but its biological function is not yet clear. The M97 protein (pM97) of mouse cytomegalovirus (MCMV) is the homolog of pUL97. First, we studied the consequences of genetic replacement of M97 by UL97. Using the infectious bacterial plasmid clone of the full-length MCMV genome (M. Wagner, S. Jonjic, U. H. Koszinowski, and M. Messerle, J. Virol. 73:7056-7060, 1999), we replaced the M97 gene with the UL97 gene and constructed an MCMV M97 deletion mutant and a revertant virus. In addition, pUL97 and pM97 were expressed by recombinant vaccinia virus to compare both for known functions. Remarkably, pM97 proved not to be the reason for the GCV sensitivity of MCMV. When expressed by the recombinant MCMV, however, pUL97 was phosphorylated and endowed MCMV with the capacity to phosphorylate GCV, thereby rendering MCMV more susceptible to GCV. We found that deletion of pM97, although it is not essential for MCMV replication, severely affected virus growth. This growth deficit was only partially amended by pUL97 expression. When expressed by recombinant vaccinia viruses, both proteins were phosphorylated and supported phosphorylation of GCV, but pUL97 was about 10 times more effective than pM97. One hint of the functional differences between the proteins was provided by the finding that pUL97 accumulates in the nucleus, whereas pM97 is predominantly located in the cytoplasm of infected cells. In vivo testing revealed that the UL97-MCMV recombinant should allow evaluation of novel antiviral drugs targeted to the UL97 protein of HCMV in mice.  相似文献   

2.
The temporal expression of the UL97 gene product during human cytomegalovirus (HCMV) infection of human foreskin fibroblasts (HFF) and subcellular localization of this protein were analyzed by using a polyclonal antiserum raised against a truncated UL97 protein of 47 kDa. The UL97 protein was detectable 16 h after infection by Western blot (immunoblot) analysis. Since only reduced UL97 expression occurred in the presence of two inhibitors of DNA replication, phosphonoacetic acid and ganciclovir, we conclude that UL97 is an early-late gene, requiring DNA replication for maximum expression. By indirect immunofluorescence, the protein could be visualized in the nuclei of virus-infected HFF 22 h after infection. Nuclear localization of the UL97 protein was also detected in thymidine kinase-deficient 143B cells infected with a recombinant vaccinia virus containing the entire UL97 open reading frame (ORF), as well as in HFF transiently expressing the entire UL97 ORF under the control of HCMV major immediate-early promoter. However, transiently expressed 5'-terminal deletion mutants of the UL97 ORF in addition showed a cytoplasmic localization of the UL97 protein, confirming the presence of a nuclear localization site in the N-terminal region of the protein. Our high-pressure liquid chromatography analyses confirmed the ganciclovir phosphorylation by the UL97 protein, but no specific phosphorylation of natural nucleosides was observed, indicating that the UL97 protein is not a nucleoside kinase. During plaque purification of recombinant UL97-deficient HCMV, this virus was growth defective; hence, we presume that UL97 may be essential for the viral life cycle.  相似文献   

3.
The human herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, HHV-7 and HHV-8, establish persistent infections with possible recurrence during immunosuppression. HCMV replication is inhibited by the nucleoside analogue ganciclovir (GCV), the compound of choice for the treatment of HCMV diseases and preemptive treatment of infections. The viral UL97 protein (pUL97) which shares homologies with protein kinases and bacterial phosphotransferases is able to monophosphorylate GCV. Homologues of pUL97 are found in HSV (UL13), VZV (ORF47), EBV (BGLF4), HHV-6 (U69), HHV-8 (ORF36) as well as in murine CMV (M97) or rat CMV (R97). Several indolocarbazoles have been reported to be specific inhibitors of pUL97. The protein is important for efficient replication of the virus. Autophosphorylation of pUL97 was observed using different experimental systems. Most recently, it has been shown that pUL97 interacts with the DNA polymerase processivity factor pUL44. Indolocarbazole protein kinase inhibitors are promising lead compounds for the development of more specific inhibitors of HCMV.  相似文献   

4.
There is no existing data on UL97 mutation in human cytomegalovirus (HCMV) isolates obtained from individuals who have never been exposed to ganciclovir (GCV). UL97 codons 439 to 645 from 61 CMV isolates from 61 immunocompetent Japanese infants and children were sequenced directly. No known GCV resistance mutations were found, meaning that the UL97 mutation had resulted from the use of GCV. On the other hand, a mutation at codon 605 (D to E) was frequently identified (56/61: 91.8%). This could be a genetic marker for HCMV in East Asian counties, because of its low prevalence in the strains of HCMV circulating in Western countries.  相似文献   

5.
1-(beta-D-Ribofuranosyl)-2,5,6-trichlorobenzimidazole (TCRB) and its 2-bromo analog, BDCRB, are potent and selective inhibitors of human cytomegalovirus (HCMV) DNA processing and packaging. Since they are readily metabolized in vivo, analogs were synthesized to improve biostability. One of these, 1-(beta-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (1263W94; maribavir), inhibits viral DNA synthesis and nuclear egress. Resistance to maribavir was mapped to UL97, and this viral kinase was shown to be a direct target of maribavir. In the present study, an HCMV strain resistant to TCRB and BDCRB was passaged in increasing concentrations of maribavir, and resistant virus was isolated. This strain (G2) grew at the same rate as the wild-type virus and was resistant to both BDCRB and maribavir. Resistance to BDCRB was expected, because the parent strain from which G2 was isolated was resistant due to known mutations in UL56 and UL89. However, no mutations were found in UL97 or other relevant open reading frames that could explain resistance to maribavir. Because sequencing of selected HCMV genes did not identify the resistance mutation, a cosmid library was made from G2, and a series of recombinant G2 wild-type viruses were constructed. Testing the recombinants for sensitivity to maribavir narrowed the locus of resistance to genes UL26 to UL32. Sequencing identified a single coding mutation in ORF UL27 (Leu335Pro) as the one responsible for resistance to maribavir. These results establish that UL27 is either directly or indirectly involved in the mechanism of action of maribavir. They also suggest that UL27 could play a role in HCMV DNA synthesis or egress of HCMV particles from the nucleus.  相似文献   

6.
The human cytomegalovirus (HCMV) protein kinase pUL97 represents an important determinant for viral replication and thus is a promising target for the treatment of HCMV. The authors screened a compound library of nearly 5000 entities based on known kinase inhibitors in 2 distinct ways. A radioactive in vitro kinase assay was performed with recombinant pUL97, purified from baculovirus-infected insect cells, on myelin basic protein-coated FlashPlates. About 20% of all compounds tested inhibited pUL97 kinase activity by more than 50% at a concentration of 10 microM. These hits belonged to various structural classes. To elucidate their potential to inhibit pUL97 in a cellular context, all compounds of the library were also tested in a cell-based activity assay. For this reason, a HEK293 cell line was established that ectopically expressed pUL97. When these cells were incubated with ganciclovir (GCV), pUL97 phosphorylated GCV to its monophosphate, which subsequently became phosphorylated to cytotoxic metabolites by cellular enzymes. Thereby, pUL97 converted cells into a GCV-sensitive phenotype. Inhibition of the pUL97 kinase activity resulted in protection of the cells against the cytotoxic effects of GCV. In total, 199 compounds of the library were cellular active at nontoxic concentrations, and 93 of them inhibited pUL97 in the in vitro kinase assay. Among these, promising inhibitors of HCMV replication were identified. The 2-fold screening system described here should facilitate the development of pUL97 inhibitors into potent drug candidates.  相似文献   

7.
An open reading frame with the characteristics of a glycoprotein-coding sequence was identified by nucleotide sequencing of human cytomegalovirus (HCMV) genomic DNA. The predicted amino acid sequence was homologous with glycoprotein H of herpes simplex virus type 1 and the homologous protein of Epstein-Barr virus (BXLF2 gene product) and varicella-zoster virus (gpIII). Recombinant vaccinia viruses that expressed this gene were constructed. A glycoprotein of approximately 86 kilodaltons was immunoprecipitated from cells infected with the recombinant viruses and from HCMV-infected cells with a monoclonal antibody that efficiently neutralized HCMV infectivity. In HCMV-infected MRC5 cells, this glycoprotein was present on nuclear and cytoplasmic membranes, but in recombinant vaccinia virus-infected cells it accumulated predominantly on the nuclear membrane.  相似文献   

8.
Three human cytomegalovirus (HCMV) strains (VR4760, VR4955, and VR5120) showing double resistance to ganciclovir (GCV) and foscarnet (PFA) were isolated from three patients with AIDS who underwent multiple sequential courses of therapy with GCV and PFA (A. Sarasini, F. Baldanti, M. Furione, E. Percivalle, R. Brerra, M. Barbi, and G. Gerna, J. Med. Virol., 47:237-244, 1995). We previously demonstrated that the three strains were genetically unrelated and that each of them was present as a single viral population in vivo. Thus, in each of the three cases, a single viral strain was resistant to both GCV and PFA. In the present paper, we report the characterization of the molecular bases of the double resistance and demonstrate that the PFA resistance is associated with a slower replication of HCMV strains in cell cultures. Sequencing of the UL97 and UL54 genes, GCV anabolism assays, and marker transfer experiments showed that GCV resistance was due to single amino acid changes in the UL97 gene product (VR4760, Met-460 --> Ile; VR4955, Ala-594 --> Val; VR5120, Leu595 --> Ser), while single amino acid changes in domain II of the DNA polymerase (VR4760 and VR5120, Val-715 --> Met; VR4955, Thr-700 --> Ala) were responsible for both the PFA resistance and the slow-growth phenotype. Thus, in these three cases, double resistance to GCV and PFA was not due to a single mutation conferring cross-resistance or to the presence of a mixture of strains with different drug susceptibilities. The HCMV DNA polymerase recombinant strains carrying the mutations conferring PFA resistance were sensitive to GCV and (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC). In addition, the same UL54 mutations were responsible for the slow growth of the clinical isolates, since the recombinant strains showed a marked delay in immediate-early antigen plaque formation and a reduction of infectious virus yield compared with AD169, from which they were derived. These results may have some important implications for the successful isolation, propagation, and characterization of PFA-resistant strains from clinical samples containing mixed viral populations.  相似文献   

9.
Human cytomegalovirus (HCMV) displays genetic polymorphisms. HCMV infects a number of organs and cell types, leading to the hypothesis that HCMV disease and tissue tropism may be related to specific sequence variability. A gene in UL/b' of HCMV, UL132 open reading frame (ORF), encodes glycoprotein (gpUL132) which is identified as a low-abundance structural component of HCMV. In this study, the sequence variability of the UL132 gene was studied in 30 clinical strains. The results showed that a large number of nucleotide non-synonymous substitutions occurred in the UL132 ORF, particularly in the 5' half, in comparison to the UL132 of reference strain, Toledo. The UL132 variants of the clinical strains were clustered clearly into three major groups in the phylogenetic tree: G1(10/30), G2(9/30), and G3(11/30). The precise definition of UL132 genotypes and their putative functions would be helpful in a better understanding of the HCMV.  相似文献   

10.
Thirteen point mutations targeting predicted domains conserved in homologous protein kinases were introduced into the UL97 coding region of the human cytomegalovirus. All mutagenized proteins were expressed in cells infected with recombinant vaccinia viruses (rVV). Several mutations drastically reduced ganciclovir (GCV) phosphorylation. Mutations at amino acids G340, A442, L446, and F523 resulted in a complete loss of pUL97 phosphorylation, which was strictly associated with a loss of GCV phosphorylation. Our results confirm that in rVV-infected cells pUL97 phosphorylation is due to autophosphorylation and show that several amino acids conserved within domains of protein kinases are essential for this pUL97 phosphorylation. GCV phosphorylation is dependent on pUL97 phosphorylation.  相似文献   

11.
人类巨细胞病毒在多次传代后,会表现出不同的毒力水平.与临床低传代株Toledo相比,实验室高传代株AD169缺失了19个开放阅读框(ORF).这19个基因被认为是与HCMV致病性最可能相关的一组基因,研究这些基因的多态性对揭示HCMV致病性的遗传基础具有指导意义.UL133基因是这19个ORF中的一个.以临床低传代株Toledo和Merlin为对照,分析了23个临床病毒株UL133基因的遗传多态性.序列分析表明,UL133基因具有一定的多态性,Toledo株、Merlin株与我们分离到的临床株一起可分为3个基因型:G1、G2和G3.G2、G3型毒株均能导致先天性感染.没有发现UL133基因型与患儿临床疾病的必然关联.  相似文献   

12.
The UL18 open reading frame of human cytomegalovirus (HCMV) (which encodes a product homologous to major histocompatibility complex class I heavy chains) has been disrupted by insertion of the beta-galactosidase gene under control of the major HCMV early promoter. The recombinant virus delta UL18 showed no phenotypic differences from wild-type HCMV in terms of single-step growth curves or particle/infectivity ratios, indicating that the UL18 gene product is dispensable for the growth of HCMV in human fibroblasts in vitro. The synthesis of the mature cellular class I heterodimer is shut down in cells infected at a high multiplicity with wild-type HCMV, and a similar effect was seen in delta UL18-infected fibroblasts, suggesting that although the UL18 gene product can associate with beta 2 microglobulin, it is not directly involved in the disruption of class I assembly.  相似文献   

13.
14.
We have investigated the previously uncharacterized human cytomegalovirus (HCMV) UL1 open reading frame (ORF), a member of the rapidly evolving HCMV RL11 family. UL1 is HCMV specific; the absence of UL1 in chimpanzee cytomegalovirus (CCMV) and sequence analysis studies suggest that UL1 may have originated by the duplication of an ancestor gene from the RL11-TRL cluster (TRL11, TRL12, and TRL13). Sequence similarity searches against human immunoglobulin (Ig)-containing proteins revealed that HCMV pUL1 shows significant similarity to the cellular carcinoembryonic antigen-related (CEA) protein family N-terminal Ig domain, which is responsible for CEA ligand recognition. Northern blot analysis revealed that UL1 is transcribed during the late phase of the viral replication cycle in both fibroblast-adapted and endotheliotropic strains of HCMV. We characterized the protein encoded by hemagglutinin (HA)-tagged UL1 in the AD169-derived HB5 background. UL1 is expressed as a 224-amino-acid type I transmembrane glycoprotein which becomes detectable at 48 h postinfection. In infected human fibroblasts, pUL1 colocalized at the cytoplasmic site of virion assembly and secondary envelopment together with TGN-46, a marker for the trans-Golgi network, and viral structural proteins, including the envelope glycoprotein gB and the tegument phosphoprotein pp28. Furthermore, analyses of highly purified AD169 UL1-HA epitope-tagged virions revealed that pUL1 is a novel constituent of the HCMV envelope. Importantly, the deletion of UL1 in HCMV TB40/E resulted in reduced growth in a cell type-specific manner, suggesting that pUL1 may be implicated in regulating HCMV cell tropism.  相似文献   

15.
Previous studies have revealed critical roles for the human cytomegalovirus (HCMV) UL97 kinase in viral nuclear maturation events. We have shown recently that UL97 affects the morphology of the viral cytoplasmic assembly compartment (AC) (M. Azzeh, A. Honigman, A. Taraboulos, A. Rouvinski, and D. G. Wolf, Virology 354:69-79, 2006). Here, we employed a comprehensive ultrastructural analysis to dissect the impact of UL97 on cytoplasmic steps of HCMV assembly. Using UL97 deletion (ΔUL97) and kinase-null (K355M) mutants, as well as the UL97 kinase inhibitor NGIC-I, we demonstrated that the loss of UL97 kinase activity resulted in a unique combination of cytoplasmic features: (i) the formation of pp65-rich aberrant cytoplasmic tegument aggregates, (ii) distorted intracytoplasmic membranes, which replaced the normal architecture of the AC, and (iv) a paucity of cytoplasmic tegumented capsids and dense bodies (DBs). We further showed that these abnormal assembly intermediates did not result from impaired nuclear capsid maturation and egress per se by using 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl) benzimidizole (BDCRB) to induce the artificial inhibition of nuclear maturation and the nucleocytoplasmic translocation of capsids. The specific abrogation of UL97 kinase activity under low-multiplicity-of-infection conditions resulted in the improved release of extracellular virus compared to that of ΔUL97, despite similar rates of viral DNA accumulation and similar effects on nuclear capsid maturation and egress. The only ultrastructural correlate of the growth difference was a higher number of cytoplasmic DBs, tegumented capsids, and clustered viral particles observed upon the specific abrogation of UL97 kinase activity compared to that of ΔUL97. These combined findings reveal a novel role for UL97 in HCMV cytoplasmic secondary envelopment steps, with a further distinction of kinase-mediated function in the formation of the virus-induced AC and a nonkinase function enhancing the efficacy of viral tegumentation and release.  相似文献   

16.
The anaphase-promoting complex (APC) is an E3 ubiquitin ligase which controls ubiquitination and degradation of multiple cell cycle regulatory proteins. During infection, human cytomegalovirus (HCMV), a widespread pathogen, not only phosphorylates the APC coactivator Cdh1 via the multifunctional viral kinase pUL97, it also promotes degradation of APC subunits via an unknown mechanism. Using a proteomics approach, we found that a recently identified HCMV protein, pUL21a, interacted with the APC. Importantly, we determined that expression of pUL21a was necessary and sufficient for proteasome-dependent degradation of APC subunits APC4 and APC5. This resulted in APC disruption and required pUL21a binding to the APC. We have identified the proline-arginine amino acid pair at residues 109–110 in pUL21a to be critical for its ability to bind and regulate the APC. A point mutant virus in which proline-arginine were mutated to alanines (PR-AA) grew at wild-type levels. However, a double mutant virus in which the viral ability to regulate the APC was abrogated by both PR-AA point mutation and UL97 deletion was markedly more attenuated compared to the UL97 deletion virus alone. This suggests that these mutations are synthetically lethal, and that HCMV exploits two viral factors to ensure successful disruption of the APC to overcome its restriction on virus infection. This study reveals the HCMV protein pUL21a as a novel APC regulator and uncovers a unique viral mechanism to subvert APC activity.  相似文献   

17.
Kamil JP  Coen DM 《Journal of virology》2007,81(19):10659-10668
UL97 is a protein kinase encoded by human cytomegalovirus (HCMV) and is an important target for antiviral drugs against this ubiquitous herpesvirus, which is a major cause of life-threatening opportunistic infections in the immunocompromised host. In an effort to better understand the function(s) of UL97 during HCMV replication, a recombinant HCMV, NTAP97, which expresses a tandem affinity purification (TAP) tag at the amino terminus of UL97, was used to obtain UL97 protein complexes from infected cells. pp65 (also known as UL83), the 65-kDa virion tegument phosphoprotein, specifically copurified with UL97 during TAP, as shown by mass spectrometry and Western blot analyses. Reciprocal coimmunoprecipitation experiments using lysates of infected cells also indicated an interaction between UL97 and pp65. Moreover, in a glutathione S-transferase (GST) pull-down experiment, purified GST-pp65 fusion protein specifically bound in vitro-translated UL97, suggesting that UL97 and pp65 do not require other viral proteins to form a complex and may directly interact. Notably, pp65 has been previously reported to form unusual aggregates during viral replication when UL97 is pharmacologically inhibited or genetically ablated, and a pp65 deletion mutant was observed to exhibit modest resistance to a UL97 inhibitor (M. N. Prichard, W. J. Britt, S. L. Daily, C. B. Hartline, and E. R. Kern, J. Virol. 79:15494-15502, 2005). A stable protein-protein interaction between pp65 and UL97 may be relevant to incorporation of these proteins into HCMV particles during virion morphogenesis, with potential implications for immunomodulation by HCMV, and may also be a mechanism by which UL97 is negatively regulated during HCMV replication.  相似文献   

18.
The herpes simplex virus type 1 (HSV-1) UL37 open reading frame encodes a 120-kDa late (gamma 1), nonstructural protein in infected cells. Recent studies in our laboratory have demonstrated that the UL37 protein interacts in the cytoplasm of infected cells with ICP8, the major HSV-1 DNA-binding protein. As a result of this interaction, the UL37 protein is transported to the nucleus and can be coeluted with ICP8 from single-stranded DNA columns. Pulse-labeling and pulse-chase studies of HSV-1-infected cells with [35S]methionine and 32Pi demonstrated that UL37 was a phosphoprotein which did not have a detectable rate of turnover. The protein was phosphorylated soon after translation and remained phosphorylated throughout the viral replicative cycle. UL37 protein expressed from a vaccinia virus recombinant was also phosphorylated during infection, suggesting that the UL37 protein was phosphorylated by a cellular kinase and that interaction with the ICP8 protein was not a prerequisite for UL37 phosphorylation.  相似文献   

19.
20.
Wang D  Shenk T 《Journal of virology》2005,79(16):10330-10338
Epithelial cells are one of the prominent cell types infected by human cytomegalovirus (HCMV) within its host. However, many cultured epithelial cells, such as ARPE-19 retinal pigmented epithelial cells, are poorly infected by laboratory-adapted strains in cell culture, and little is known about the viral factors that determine HCMV epithelial cell tropism. In this report, we demonstrate that the UL131 open reading frame (ORF), and likely the entire UL131-128 locus, is required for efficient infection of epithelial cells. Repair of the mutated UL131 gene in the AD169 laboratory strain of HCMV restored its ability to infect both epithelial and endothelial cells while compromising its ability to replicate in fibroblasts. ARPE-19 epithelial cells support replication of the repaired AD169 virus as well as clinical isolates of HCMV. Productive infection of cultured epithelial cells, endothelial cells, and fibroblasts with the repaired AD169 virus leads to extensive membrane fusion and syncytium formation, suggesting that the virus may spread through cell-cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号