首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The biological stabilisation of the organic fraction of municipal solid waste (OFMSW) into a form stable enough for land application can be achieved via aerobic or anaerobic treatments. To investigate the rates of degradation (e.g. via electron equivalents removed, or via carbon emitted) of aerobic and anaerobic treatment, OFMSW samples were exposed to computer controlled laboratory-scale aerobic (static in-vessel composting), and anaerobic (thermophilic anaerobic digestion with liquor recycle) treatment individually and in combination. A comparison of the degradation rates, based on electron flow revealed that provided a suitable inoculum was used, anaerobic digestion was the faster of the two waste conversion process. In addition to faster maximum substrate oxidation rates, anaerobic digestion (followed by post-treatment aerobic maturation), when compared to static composting alone, converted a larger fraction of the organics to gaseous end-products (CO2 and CH4), leading to improved end-product stability and maturity, as measured by compost self-heating and root elongation tests, respectively. While not comparable to windrow and other mixed, highly aerated compost systems, our results show that in the thermophilic, in-vessel treatment investigated here, the inclusion of a anaerobic phase, rather than using composting alone, improved hydrolysis rates as well as oxidation rates and product stability. The combination of the two methods, as used in the DiCOM® process, was also tested allowing heat generation to thermophilic operating temperature, biogas recovery and a low odour stable end-product within 19 days of operation.  相似文献   

2.
In this study, a short pre-aeration step was investigated as pre-treatment for thermophilic anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). It was found that pre-aeration of 48 h generated enough biological heat to increase the temperature of bulk OFMSW to 60 °C. This was sufficient self-heating of the bulk OFMSW for the start-up of thermophilic anaerobic digestion without the need for an external heat source. Pre-aeration also reduced excess easily degradable organic compounds in OFMSW, which were the common cause of acidification during the start-up of the batch system. Careful consideration however must be taken to avoid over aeration as this consumes substrate, which would otherwise be available to methanogens to produce biogas. To accelerate methane production and volatile solids destruction, the anaerobic digestion in this study was operated as a wet process with the anaerobic liquid recycled through the OFMSW. Appropriate anaerobic liquid inoculum was found to be particularly beneficial. It provided high buffer capacity as well as suitable microbial inoculum. As a result, acidification during start-up was kept to a minimum. With volatile fatty acids (VFAs-acetate in particular) and H2 accumulation typical of hydrolysis and fermentation of the easily degradable substrates during start-up, inoculum with high numbers of hydrogenotrophic methanogens was critical to not only maximise CH4 production but also reduce H2 partial pressure in the system to allow VFAs degradation. In a lab-scale bioreactor, the combined pre-aeration and wet thermophilic anaerobic digestion was able to stabilise the OFMSW within a period of only 12 days. The stabilised inert residual material can be used as a soil amendment product.  相似文献   

3.
Abstract

This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process.  相似文献   

4.
One of the more promising processes for the energetic transformation of waste is the anaerobic digestion of the Organic Fraction of Municipal Solid Waste (OFMSW). An experimental campaign was carried out on three different samples of OFMSW from Waste Separation (WS), one as received and two obtained after mechanical treatment (squeezing): OFMSW slurry (liquid fraction) and OFMSW Waste (residual solid fraction). Anaerobic Biogasification Potential (ABP) and anaerobic digestion tests (AD) were carried out, investigating the effects of inoculum and pH. The OFMSW Waste was also examined to evaluate the possibility to dispose of it in a landfill. Results showed that OFMSW slurry must be diluted and inoculated and that pH control in the start up phase is essential, in order to have significant biogas productions. OFMSW as received did not show a significant biogas production, while OFMSW Waste showed suitable characteristics for landfill disposal, except for Dissolved Organic Carbon.  相似文献   

5.
The abiotic conditions required for eradication of Polymyxa betae, the vector of Beet necrotic yellow vein virus in sugar beet, were investigated. Survival of resting spores of P. betae was determined under aerobic (30 min, 4 days and 21 days) and anaerobic (4 days) conditions under several temperature regimes in a water suspension and in leachate extracted from an aerobic compost heap. In water under aerobic conditions the lethal temperature was 60, 55 and 40°C for exposure times of 30 min, 4 days and 21 days, respectively. The effect of compost leachate and/or anaerobic conditions on survival of P. betae depended on temperature. After incubation for 4 days at 20°C, no significant effects of anaerobic conditions or leachate on the survival of P. betae were found. However, at 40°C for 4 days under anaerobic conditions, survival of P. betae was significantly lower than survival under aerobic conditions in water as well as in leachate. In leachate taken from an aerobic compost heap, aerobically incubated at 40°C for 4 days, survival of P. betae was significantly lower than survival in water at the same temperature. As anaerobic spots are prevalent in aerobic compost heaps, especially during the thermophilic phase, actual inactivation temperatures under composting conditions are likely to be lower than the temperatures we found for eradication in water under aerobic conditions.  相似文献   

6.
Every year, several million tonnes of anaerobic digestate are produced worldwide as a by-product of the biogas industry, most of which is applied as agricultural fertilizer. However, in the context of a circular bioeconomy, more sustainable uses of residual digestate biomass would be desirable. This study investigates the fate of the sterol lipids β-sitosterol and cholesterol from the feedstocks to the final digestates of three agricultural and one biowaste biogas plants to assess if sterols are degraded during anaerobic digestion or if they remain in the digestate, which could provide a novel opportunity for digestate cascade valorization. Gas chromatographic analyses showed that feedstock sterols were not degraded during anaerobic digestion, resulting in their accumulation in the digestates to up to 0.15% of the dry weight. The highest concentrations of around 1440 mg β-sitosterol and 185 mg cholesterol per kg dry weight were found in liquid digestate fractions, suggesting partial sterol solubilization. Methanogenic batch cultures spiked with β-sitosterol, cholesterol, testosterone and β-oestradiol confirmed that steroids persist during anaerobic digestion. Mycobacterium neoaurum was able to transform digestate sterols quantitatively into androstadienedione, a platform chemical for steroid hormones, without prior sterol extraction or purification. These results suggest that digestate from agricultural and municipal biowaste is an untapped resource for natural sterols for biotechnological applications, providing a new strategy for digestate cascade valorization beyond land application.  相似文献   

7.
The anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is currently an attractive treatment process with energy production in the form of biogas. Hydrolysis is the rate-limiting step for the anaerobic digestion of solid wastes. Thus, in the present study fungal enzymatic pretreatment of OFMSW was applied to enhance biogas production. Two enzyme cocktails rich on β-glucosidase were produced from submerged fermentation of Aspergillus niger on basal medium using OFMSW as carbon source and urea (Urea cocktail) and Ulva rigida as nitrogen source (Ulva cocktail). Ulva cocktail displayed an important effect on OFMSW solubilization. Therefore, an increase of reducing sugar concentration about 60% was obtained which was in correlation with chemical oxygen demand (COD) increase. The performance of enzymatic pretreatment on anaerobic digestion of OFMSW was studied by conducting biochemical methane potential tests. Results showed that the enzymatic pretreatment improved methane yield of OFMSW even at high solid concentration. High methane yield about 500 ml/g total volatile solid was obtained, which corresponds up to 68% enhancement over the control.  相似文献   

8.
The influence of composting on the fertilizing value of an aerobic sewage sludge and its action on ryegrass was studied. Soil P and K contents, cation-exchange capacity (CEC) and CEC/total organic carbon incresed with composting, while the percentage of phytotoxic substances diminished. The compost provided useful quantities of organic matter and macronutrients. The addition of uncomposted waste to the soil initially had a depressive effect on yield which disappeared after a period of incubation of this material in the soil, whereas the application of a mature compost produced yields superior to those in the control treatment.  相似文献   

9.
We monitored the effect of the application of treated sludge on the behaviour of enterobacteriaceae (mainly faecal coliforms and especially Escherichia coli) in the soil, and studied their evolution over time after application. Three different sludges were used: two from a municipal sewage plant, one of them had been subjected to anaerobic digestion and heat drying, and the other to anaerobic digestion and mechanical dehydration, and one from a dairy waste treatment to aerobic digestion and gravity thickening. Two types of tests were carried out: type O, in the open air, with no possibility of controlling humidity or temperature; and type L, under laboratory conditions, with controlled temperature and humidity. Sludge tests were also run on unscreened soil previously treated with chemical fertilizer. After 80 days of experimentation the populations of faecal coliforms and E. coli had decreased considerably or were undetectable in assays carried out on the soil/sludge mixtures, under both open-air and laboratory conditions, but that, over the same period, in the mixtures containing chemical fertilizer (calcium ammonium nitrate) there had been a considerable increase in the micro-organism populations studied.  相似文献   

10.
Anaerobic digestion of dairy cow manure (CM), the organic fraction of municipal solid waste (OFMSW), and cotton gin waste (CGW) was investigated with a two-phase pilot-scale anaerobic digestion (AD) system. The OFMSW and CM were digested as single wastes and as combined wastes. The single waste digestion of CM resulted in 62m(3) methane/ton of CM on dry weight basis. The single waste digestion of OFMSW produced 37m(3) methane/ton of dry waste. Co-digestion of OFMSW and CM resulted in 172m(3) methane/ton of dry waste. Co-digestion of CGW and CM produced 87m(3) methane/ton of dry waste. Comparing the single waste digestions with co-digestion of combined wastes, it was shown that co-digestion resulted in higher methane gas yields. In addition, co-digestion of OFMSW and CM promotes synergistic effects resulting in higher mass conversion and lower weight and volume of digested residual.  相似文献   

11.
Bats are responsible for many ecological services, such as seed dispersal of several plant species, contributing to the processes of succession and forest regeneration. A factor that can interfere with this process is the animal digestion, which can affect germination, altering the patterns of seedling distribution. The effects of seed passage through bats’ guts varies with the species, leading to some discrepancies in the literature. In this study, we tested the digestion time of one Phyllostomidae bat species, Sturnira lilium, in two Neotropical plants: Solanum paniculatum and Ficus organensis, and the effects on seed germination. The experiment was conducted in captivity and the germination tests were made in laboratory conditions. The results suggested that most seeds ingested by S. lilium are dispersed within 40 min for both species and the digestion seems not to significantly affect the germination of F. organensis, despite the slight acceleration of germination. In S. paniculatum, germination occurred only in the control (39%), whereas in the treatments, all the seeds remained dormant during the 25 experimental days. In this case, the digestion of S. lilium possibly contributes to the formation of seed banks, randomizing the temporal distribution of seedlings.  相似文献   

12.
The degradation of several polycyclic aromatic hydrocarbons (PAHs) in soil through composting was investigated. The selected PAHs included: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, and chrysene, with concentrations simulating a real creosote sample. The degradation of PAHs (initial concentration 1 g of total PAHs kg−1 dry soil) was assessed applying bioaugmentation with the white-rot fungi Trametes versicolor and biostimulation using compost of the source-selected organic fraction of municipal solid waste (OFMSW) and rabbit food as organic co-substrates. The process performance during 30 days of incubation was evaluated through different analyses including: dynamic respiration index (DRI), cumulative oxygen consumption during 5 days (AT5), enzymatic activity, and fungal biomass. These analyses demonstrated that the introduced T. versicolor did not significantly enhance the degradation of PAHs. However, biostimulation was able to improve the PAHs degradation: 89% of the total PAHs were degraded by the end of the composting period (30 days) compared to the only 29.5% that was achieved by the soil indigenous microorganisms without any co-substrate (control, not amended). Indeed, the results showed that stable compost from the OFMSW has a greater potential to enhance the degradation of PAHs compared to non-stable co-substrates such as rabbit food.  相似文献   

13.
Composting of tannery effluent with cow manure and wheat straw   总被引:4,自引:0,他引:4  
Wastewater from the leather industry in León (Guanajuato, México) is discharged into the Turbio river without treatment. Tannery wastewater contains utilizable nutrients, but also toxic organic compounds which might affect soil processes and plant growth, and pathogens, which might pose a threat to the local farming community. Tannery effluent was composted with cow manure and wheat straw for 90 days to reduce pathogens and toxic organic compounds and monitored. The compost was characterized by an electrolytic conductivity (EC) of 28.1 ms cm(-1), cation exchange capacity of 17.7 meq 100 g(-1), an absorbance at 645 nm of 0.0175, a respiration rate of 0.062 mg CO2-C kg(-1) compost-C day(-1), pH 8.5 and C:N ratio 7:1 with a germination index for cress (Lepidium sativum) of 48% after 90 days. Less than 10 faecal coliforms and no Salmonella sp., Shigella sp. or eggs of helminthes were detected in the compost while total coliforms decreased by log10 of 2. Total concentrations of lead (Pb) were 8.9 mgkg(-1) dry compost, chromium (Cr) 77 mg kg(-1) dry compost, cadmium (Cd) 0.4 mg kg(-1) dry compost, copper (Cu) 10.3 mg kg(-1) dry compost and sodium (Na) 14,377 mg kg(-1) dry compost. The compost characteristics indicated that it was mature, but the germination index for cress of less than 50% suggested possible remaining phytotoxic compounds. However, the large salt concentrations (especially Na), might have inhibited cress development and thus reduced the germination index. The large salt concentration might thus limit the use of this kind of compost.  相似文献   

14.
Reviews in Environmental Science and Bio/Technology - Direct landspreading of anaerobic digestates is the most common digestate management strategy. Nevertheless, digestate post-treatment can be...  相似文献   

15.
A loam soil from Pennsylvania without a history of exposure to explosives was incubated with 5 g kg-1 of 15N-labeled 2,4,6-trinitrotoluene (TNT) and 200 μCi kg-1 of 14C-TNT for 3 days and then amended with compost at a 1:2 soil to compost ratio. The compost was prepared by mixing 40% alfalfa hay, 40% grass hay, 10% spent mushroom compost, and 10% municipal biosolids. The mixture of soil and compost was inoculated with methanogens from cattle manure, amended with glucose and starch, and incubated for 37 days under anaerobic conditions. The anaerobic incubation was followed by 26 days of forced aerobic incubation. At the end of the aerobic phase, most of the radioactivity was associated with organic matter; only 8.7% could be extracted with water and methanol, but no TNT was present in the extracts as determined by high-performance liquid chromatography. The unextractable radioactivity was associated with humic acid (40.0±1.0%), fulvic acid (14.3±1.4%), and humin (28.2±0.5%). Radioactive materials associated with humic acid and humin were analyzed by solid-state 15N-nuclear magnetic resonance (NMR) spectrometry. The NMR spectra indicated that nitro groups of TNT had been reduced to amino groups thatwere subsequently involved in the formation of covalent bonds with soil organic matter.  相似文献   

16.

Background  

Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools.  相似文献   

17.
Although release and accumulation of plant metabolites from plant into soil can influence allelopathy, little information is known about metabolite changes that occur in leaf, litter and soil. In this study, seed germination bioassay tests and metabolomics analysis were performed to investigate the phytotoxic effects and metabolic variations (measured as buckets) in the ethanolic extracts of leaf, leaf litter and soil of Wedelia trilobata. Increasing the ethanolic extracts concentration of all extracts significantly inhibited Lactuca sativa germination rate (GR), shoot height (SH) and root length (RL). Soil exerted the strongest inhibition but contained the lowest number of buckets relative to those of leaf and leaf litter extracts. An overlap overview on the metabolome revealed a poor bucket overlap and redundancy among the leaf, leaf litter and soil extracts. Canonical correspondence analysis concluded that the SH of L. sativa was more sensitive to leaf litter extract and the leaf extract exerted a strong influence on the GR and RL of L. sativa. Multivariate analysis suggested that the metabolome of the leaf, leaf litter and soil differ substantially. Finally, putative identification using MS/MS data demonstrated various plant metabolites with phytotoxic effects that can contribute to the allelopathy of W. trilobata.  相似文献   

18.
The sludge digestate stabilized by mesophilic anaerobic digestion was further degraded through thermophilic anaerobic digestion using 0–10 % (v/v) of thermophilic, proteolytic Coprothermobacter proteolyticus, and/or methanogenic granular sludge. The results demonstrated that the temperature shift to thermophilic condition promoted abiotic solubilization of proteins and reactivated the fermentative bacteria and methanogens indigenous in the sludge digestate, resulting in a final methane yield of 6.25 mmol-CH4/g-volatile suspended solid (VSS) digestate. The addition of C. proteolyticus accelerated the hydrolysis and fermentation of proteins and polysaccharides in the digestate during the early stage of thermophilic anaerobic digestion and stimulated methane production by syntrophic cooperation with methanogenic granular sludge. In the treatment with granular sludge and inoculated with 10 % (v/v) of C. proteolyticus, a final methane yield of 7 mmol-CH4/g-VSS digestate was obtained, and 48.4 % proteins and 27.0 % polysaccharides were degraded. The dissolved proteins were contributed by abiotic factor, C. proteolyticus, and indigenous digestate bacteria, respectively, by around 16, 28, and 56 %.  相似文献   

19.
The effects of kinetin and gibberellin were examined under anaerobicconditions (0% oxygen) and aerobic conditions (20% oxygen) onthe germination of dehusked seeds of indica and japonica ricecultivars that had been harvested at different times duringthe formation of seeds. Surjamkhi was used as a representativeof deep dormant indica cultivars and Assam IV as a less dormantindica cultivar. Sasanishiki was used as the japonica rice cultivar.Both phytohormones were applied at a concentration of 10-3Mwhichproved to have the greatest stimulatory effect in preliminarywork at concentrations of 10-3–10-5M. Under aerobic conditions,inhibition of germination by dehusking of Sasanishiki seedsthat had been harvested either 30 or 60 d after anthesis wasovercome by kinetin and all seeds germinated. Complete germinationinduced by kinetin under aerobic conditions was also achievedwith the dehusked seeds of the indica rice cultivar Assam IVthat had been harvested on two occasions and of Surjamkhi thathad been harvested 28 d after anthesis. In contrast, germinationof dehusked japonica seeds stimulated by anaerobiosis was inhibitedby kinetin. The stimulatory effects of gibberellin on the germinationof indica and japonica rice seeds were observed under aerobicand anaerobic conditions. Under anaerobic conditions, the responsesof dehusked indica and japonica rice seeds to kinetin and gibberellindiffered, being negative with kinetin and positive with gibberellin.Under aerobic conditions, the stimulatory effects of kinetinon germination of dehusked seeds were greater than those ofgibberellin. Thus, treatment with kinetin appears to be usefulfor breaking the considerable dormancy commonly observed inthe dehusked seeds of indica rice. Mechanisms are proposed toexplain the stimulatory effects of these phytohormones on thegermination of dehusked seeds of indica and japonica rice underaerobic and anaerobic conditions. Rice; Oryza sativaL.; seed germination; dehusking treatment; gibberellin; indica; japonica; kinetin; oxygen; dormancy; germination inhibition; seed formation  相似文献   

20.
Cattle manure can be processed to produce bioenergy, resulting in by‐products with different physicochemical characteristics. To evaluate whether application of such bioenergy by‐products to soils would be beneficial compared with their unprocessed counterpart, we quantified differences in greenhouse gas emissions and carbon (C) and nitrogen (N) dynamics in soil. Three by‐products (15N‐labeled cattle manure, from which anaerobic digestate was obtained, which was subsequently pyrolysed) were applied to a loess and a sandy soil in a laboratory incubation study. The highest losses of soil C from biological activity (CO2 respiration) were observed in manure treatments (39% and 32% for loess and sandy soil), followed by digestate (31% and and 18%), and biochar (15% and and 7%). Emissions of nitrous oxide (N2O) ranged from 0.6% of applied N from biochar to 4.0% from manure. Isotope labeling indicated that manure N was most readily mineralized, contributing 50% to soil inorganic N. The anaerobic digestate was the only by‐product increasing the mineral N pool, while reducing emissions of N2O compared with manure. In biochar treatments, less than 18.3% of soil mineral N derived from the biochar, while it did not constrain mineralization of native soil N. By‐products of anaerobic digestion and pyrolysis revealed soil fertility in addition to environmental benefits. However, the reported advantages lessen when the declining yields of C and N over the bioenergy chain are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号