首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
An important methodological problem in plant ecology concerns the way in which the type and extent of nutrient limitation in terrestrial communities should be assessed. Conclusions on nutrient limitation have been founded mainly on soil extractions, fertiliser trials and tissue nutrient concentrations. In order to avoid some of the problems associated with these methods, we employed a special technique using intact sods which rooted both in the intact soil and in a nutrient solution, from which N, P and K were omitted stepwise. The method was applied to hay-field communities which differed in their history of fertiliser application. Four fields were compared which were not fertilised for 2, 6, 19 or 45 years, while hay making continued. This was done to restore former species-rich grassland communities. We tested the hypothesis that the increase in species diversity in these grasslands was attended by an increase in the number of limiting nutrients.We observed clear shifts in the type and extent of nutrient limitation. Fields which were recently fertilised were characterised by nitrogen and potassium limitation, while phosphorus limitation increased in importance towards the later stages of succession. In the last field (45 years unfertilised) N, P and K equally limited production at the community level. These conclusions differed from those drawn from a fertiliser trial in these same four fields, which failed to detect phosphorus limitation.It is concluded that the use of this method provides a valuable extra source of information while studying relationships between nutrient limitation and species diversity in grassland communities.  相似文献   

2.
Abstract. Nanocyperion plant communities occur on wet, more or less nutrient‐poor and sparsely vegetated soils in temperate climates and are characterized by tiny, very shortlived plant species. Most of these have become locally extinct. It is generally assumed that drainage and eutrophication were the most important reasons for this decrease. However, chemical analysis of soil pore water from plots on growth sites of these ephemerals showed that phosphorus availability was relatively high. In a greenhouse experiment, the growth of ephemeral species was strongly limited by the amount of available phosphorus, whereas there was little or no limitation to the growth of other plant species from this habitat. At low phosphorus concentrations, the ephemeral species reached their reproductive phase within the same period, but showed a strong reduction in the amount of flowers that were produced. We concluded that ephemeral species in particular require a minimum amount of phosphorus for reproduction. Other species on nutrient‐poor, wet soils have a longer life span and can postpone flowering in nutrient‐poor soils. In contrast to other short‐lived plant species from the same habitat, the growth of ephemeral species was barely stimulated by enhanced nitrogen availability. Apparently, the ephemerals are adapted to low nitrogen concentrations. The occurrence on nitrogen‐poor and relatively phosphorus‐rich soils suggests that this community may be very sensitive to nitrogen deposition. Reduced phosphorus availability below the minimum requirements of ephemerals, for example after acidification or the exclusion of human activities, has possibly contributed to the decrease of ephemeral plant species.  相似文献   

3.
Excess soil phosphorus often constrains ecological restoration of degraded semi-natural grasslands in Western-Europe. Slow-growing species, often target of restoration (measures), are at a disadvantage because they are outcompeted by fast-growing species. Gaining insight into the responses of plant species and communities to soil phosphorus availability will help understanding restoration trajectories of grassland ecosystems. We set up two pot experiments using twenty grassland species with contrasting growth forms (i.e. grasses versus forbs) and nutrient use strategies (i.e. acquisitive versus conservative nutrient use). We quantified the nutrient use strategy of a species based on the stress-tolerance value of the CSR framework (StrateFy et al. 2017). We grew these species (1) as monocultures and (2) in mixtures along a soil phosphorus gradient and measured the aboveground biomass and plant phosphorus concentrations. Plant phosphorus concentration generally increased with soil phosphorus supply and biomass increased with soil phosphorus supply only in conservative communities. Forbs had higher plant phosphorus concentrations compared to grasses both in monocultures and mixtures. The species’ nutrient use strategy had contrasting effects on plant tissue phosphorus concentrations, depending on soil phosphorus supply (interaction effect) and vegetation biomass (dilution effect). Our findings contribute to the knowledge required for successful ecological restoration of species-rich grasslands. Our results suggest that under specific conditions (i.e. nitrogen limitation, no dispersal limitation, no light limitation), slow-growing species can survive and even thrive under excess soil phosphorus availability. In the field, competition by fast-growing species may be reduced by increased mowing or grazing management.  相似文献   

4.
Grassland management regimens influence the structure of archaeal communities in upland pasture soils, which appear to be dominated by as yet uncultivated non-thermophilic Crenarchaeota. In an attempt to determine which grassland management factors select for particular crenarchaeal community structures, soil microcosm experiments were performed examining the effect of increased pH, application of inorganic fertilizer (ammonium nitrate) and sheep urine deposition on both archaeal and bacterial communities in unmanaged grassland soil. As grassland management typically increases pH, a further experiment examined the effect of a reduction in pH, to that typical of unimproved grassland soils, on archaeal and bacterial communities. The RT-PCR amplification of 16S rRNA followed by denaturing gradient gel electrophoresis analysis demonstrated a distinct and reproducible effect on bacterial communities after incubation for 28 or 30 days. In contrast, none of the treatments had a significant effect on the structure of the crenarchaeal community, indicating that these factors are not major drivers of crenarchaeal community structures in grassland soils.  相似文献   

5.
Abstract. Savanna trees have a multitude of positive and negative effects on understorey grass production, but little is known about how these effects interact. We report on a fertilization and shading experiment carried out in a Tanzanian tropical dry savanna around Acacia tortilis trees. In two years of study there was no difference in grass production under tree canopies or in open grassland. Fertilization, however, indicate that trees do affect the nutrient limitation of the grass layer with an N‐limited system in open grassland to a P‐limited system under the trees. The N:P ratios of grass gave a reliable indication of the nature of nutrient limitation, but only when assessed at the end of the wet season. Mid‐wet season nutrient concentrations of grasses were higher under than outside the tree canopy, suggesting that factors other than nutrients limit grass production. A shading experiment indicated that light may be such a limiting factor during the wet season when water and nutrients are sufficiently available. However, in the dry season when water is scarce, the effect of shade on plant production became positive. We conclude that whether trees increase or decrease production of the herbaceous layer depends on how positive effects (increased soil fertility) and negative effects (shade and soil water availability) interact and that these interactions may significantly change between wet and dry seasons.  相似文献   

6.
Roan antelope are distributed mainly in regions characterized by infertile soils, offering food of low quality. We hypothesized that roan may select localities with higher soil nutrient levels and/or grass swards with more favourable properties in terms of food abundance or quality than generally available in those regions. Roan antelope were observed in a savanna region in South Africa where soils of widely varying nutrient status occurred. Roan favoured open grassland over wooded savanna areas. During the wet season, roan preferred sites with felsite‐derived soil of intermediate soil nutrient status. Grasslands growing on nutrient enriched alluvial soils were preferred outside of the early wet season, although most of the favourable sward characteristics were present in other landscape units. Food quantity, rather than quality appeared to attract roan to foraging sites in the late wet and early dry seasons. Food quality appeared more important in the early wet and late dry seasons. The higher degree of clustering of leafy material within foraging swards seemed to be an additional discriminating factor. The factors governing the selection of foraging sites by roan did not seem notably different from those influencing other species of grazing ruminant, but roan nevertheless seemed tolerant of stemmy grasslands growing on nutrient richer substrates.  相似文献   

7.
Abstract. Plant species-rich Calthion meadows on mesotrophic fen peat soil extensively cut for hay are among the endangered semi-natural vegetation types in northwestern Europe. They are often badly affected by lowering the groundwater table (drainage) and fertilization. In a comparative study of an undrained site with a Calthion meadow and an adjacent drained site, availability of N, P and K was biologically assessed under field conditions (for two years) as well as in a greenhouse (for 18 weeks) by measuring shoot responsiveness. Also, experimental wetting of intact turf samples taken from both sites was applied in order to study the interaction between nutrient supply and anaerobic soil conditions. It was concluded that the above-ground phytomass yield in the undrained site was restricted by a major shortage of N-supply and a moderate shortage of K-supply by the fen peat soil. The above-ground phytomass yield of the drained site was only reduced by a strongly limited supply of K by the soil. The extent of K-deficiency was larger for the drained site. No P-deficiency was observed in any of the drained or undrained sites. Rewetting turf samples, taken from the drained site, did not change above-ground phytomass yields, suggesting that nutrient supplies were not affected by rewetting. Leaching has likely resulted in a strong reduction of K-supply in the drained site. It is assumed that a shortage in K-supply from the peat soil may have become an important environmental constraint for characteristic plant species of Calthion meadows. This may hamper the development of this meadow type on drained peat soils after rewetting by groundwater discharge.  相似文献   

8.
The target rate of afforestation in Ireland over the next 30 years is 20,000 ha per year, which would result in an increase of the forest cover from the current 10% to 17%. In order to promote sustainable forest management practices, it is essential to know the composition and conservation value of habitats where afforestation is planned and the effects of subsequent planting upon biodiversity. The objectives of this study were to investigate changes in vegetation composition and diversity of grasslands 5 years after afforestation with Sitka spruce (Picea sitchensis) and determine the primary ecological and management factors responsible for these changes. Species cover, environmental and management data were collected from 16 afforested and unplanted improved and wet grassland site pairs in Ireland. Our results indicate that 5 years after tree planting, there were significant changes in richness, composition, and abundance of species. Competitive and vigorous grasses were more abundant in planted than in unplanted sites, as were generalist species found in both open and wooded habitats, while small-stature shade-sensitive species were less abundant. Vascular plant species richness and Shannon’s diversity index were higher in unplanted wet grassland, than in the planted sites. Bryophyte species richness was higher in planted improved grassland than in unplanted sites. The differences were primarily the result of the exclusion of grazing, ground preparation, changes in nutrient management and drainage for afforestation. Drainage ditches provided a temporary habitat for less competitive species, but the overall effect of drainage was to reduce the diversity of species dependent on wet conditions. Variance partitioning showed differences in the relative influences of environmental and management variables on biodiversity in the two habitats, probably due to the greater pre-afforestation grazing pressure and fertilisation levels in improved grasslands. The differences in biodiversity between planted and unplanted grasslands indicate that afforestation represents a threat to semi-natural habitats where distinctive and highly localised plant communities could potentially occur.  相似文献   

9.
Nutrients are known to limit productivity of plant communities around the world. In the Brazilian Cerrado, indirect evidences point to phosphorus as the main limiting nutrient, but some fertilization experiments suggest that one or more micronutrients might play this role. Boron is one of the essential micronutrients for plants. Agronomically, it received some attention, but it has mostly been neglected in ecological studies assessing the effects of nutrients on plant growth. Through field fertilization and mesocosm experiments in a degraded area in the Cerrado, we show that boron addition increased biomass production of herbaceous vegetation. This could be related to a lower aluminum uptake in the boron fertilized plants. Even considering that plant growth was promoted by boron addition due to aluminum toxicity alleviation, this is the first study reporting boron limitation in natural, noncultivated plant communities and also the first report of this kind in vegetative grasses. These results contribute to disentangling patterns of nutrient limitation among plant species of the species‐rich, aluminum‐rich, and nutrient‐poor Cerrado biome and highlight the potential role of micronutrients, such as boron, for growth of noncrop plants. Understanding how nutrient limitation differs among functional groups in the highly biodiverse areas founded on ancient tropical soils may help managing these plant communities in a changing world.  相似文献   

10.
Question: What is the contribution of a rise in groundwater level to vegetation restoration of degraded peat meadows compared to abandonment only? Location: Abandoned peat meadows in the central part of The Netherlands. Methods: Comparison of species composition and species abundance of vegetation and seed banks of reference and rewetted peat meadows, using plant trait and seed bank analysis. Results: Vegetation of rewetted meadows shared on average only 27% of their species with the reference meadow, while this was 50% on average for species in the seed bank. Rewetted meadows had a lower total number of species and a lower number of wet grassland and fen species present in the vegetation, but had higher species richness per m2, although evenness was not affected. Rewetting increased the dominance of species of fertile and near neutral habitats, but did not result in an increase of species of wet or waterlogged habitats. Re-wetted meadows were dominated by species relying mainly on vegetative reproduction and species with a low average seed longevity compared to the reference meadow. Conclusion: Rewetting was not effective as a restoration measure to increase plant species diversity or the number of wet grassland and fen species in the vegetation. If no additional restoration management is applied, the seed bank will be depleted of seeds of species of wet grassland or fen habitats, further reducing the chances of successful vegetation restoration.  相似文献   

11.
In areas with intensive land use, such as the Netherlands, habitat fragmentation and loss of habitat quality due to eutrophication and drainage are major threats to the preservation of species‐rich communities of heathland and acid grassland. Restoration of such nutrient‐poor habitats may be carried out by removing the topsoil from ex‐arable land, in order to lower the nutrient levels. However, the establishment of target plant communities is known to be fragmentary. The current study shows that this also applies to butterflies. Ten years after topsoil removal in eight study areas, on average, only 3.5 of 10 characteristic heathland species were recorded on the sites. Species that did colonize had a significantly lower density than in the source populations. Our study indicates that although isolation effects were limiting colonization, poor habitat quality was the main limiting factor, mainly due to lack of host plants, hydrological conditions, and, to a lesser extent, lack of nectar plants and excessive residual nutrient levels. An experiment with the introduction of cut heather in one study area showed a significantly higher abundance of both target and nontarget butterflies in manipulated sites than in control sites. It can be concluded that habitat restoration by topsoil removal can be successful for butterflies of especially wet heathland habitats, provided that source populations are at close range and care is taken that complete plant communities are restored.  相似文献   

12.
The nature of ecological stability is still debated, and there is a need to establish which types of communities show resistance to environmental change and to explore community responses in relation to their environmental context. This study aims to investigate the effects of reinstating cutting management on abandoned wet grasslands by comparing responses in two different communities with contrasting environmental conditions, to elucidate the restoration potential of wet grasslands. Two coastal wet grassland plant communities in Estonia were monitored over 5?years: a species-poor lower shore grassland and a more diverse tall grassland. Piezometers and soil samples were used to characterise the hydrology, while cutting effects and ongoing abandonment were compared using replicate quadrats in both grasslands. Annual changes and significant differences in community composition were analysed using Detrended and Canonical Correspondence Analyses, diversity indices, and inferential statistics. The results showed that cutting produced greater changes in composition and species abundance in the lower shore community compared to the tall grassland, including a greater proportion of significant differences. The increased responsiveness of the lower shore community may be related to its variable hydrological regime, especially flooding, which creates a dynamic environment favouring adaptable species. In contrast, the tall grassland featured a more stable water regime and species that responded less to perturbation, and manifested resistance to cutting management. Thus, restoring abandoned wet grasslands through vegetation management may be a slow process, especially where there is residual diversity, and the importance of hydrological regime in determining wet grassland communities should be considered.  相似文献   

13.
The Jegrznia floodplain has been deprived of flooding since the late 19th century. Human influence has been limited to haymaking and cattle grazing without land reclamation. Therefore, the present vegetation reflects the impact of hydrological changes, without being much disturbed by changes in other factors. A drainage gradient on the former floodplain was examined for nutrient deficiencies and compared with an intact floodplain. For this purpose we analyzed nutrient concentrations in above ground biomass, we measured redox potentials and peat variables for a rich fen vegetation, a well-developed fen meadow as well as an impoverished fen meadow vegetation. According to P:N-ratios in above ground biomass, all vegetation types appear to be limited by phosphorus, whereas the impoverished fen meadow is also limited by potassium. These results are supported by the chemical composition of the peat, redox characteristics and the physical changes in the peat induced by drainage. It is concluded that hydrological changes in combination with an annual mowing regime resulted in a shift from no nutrient limitation to P-and/or K-limitation in the former Jegrznia floodplain. Changes in hydrology at Jegrznia stopped the input of nutrients, increased the leaching of K and turned P into unavailable Al and Fe-complexes. Continued mowing increased P-and K-deficiency.  相似文献   

14.
R. Aerts  H. de Caluwe  B. Beltman 《Oikos》2003,101(3):489-498
Correlative studies have shown a ‘hump‐backed’ relation between the vegetation N:P ratio and plant species diversity with the highest diversity at balanced N:P ratios (between 10 and 14). We tested the hypothesis that adding growth‐limiting nutrients to mesotrophic grasslands that were in shortage of either N (N:P ratio<10) or P (N:P ratio>14) would lead to an increase of plant diversity. Thereto, we studied the effects of long‐term (11 yr) experimentally increased N and/or P supply on soil nutrient pools, vegetation nutrient dynamics and biodiversity in a riverine grassland in the Netherlands with a low soil N:P ratio (N shortage) and a peat grassland with a high soil N:P ratio (P shortage), respectively. Eleven years of nutrient addition hardly had any effects on the total stocks of C, N and P in the soils of both sites, due to the large size of the soil nutrient pools already present and to the management at both sites (annual hay‐making and ‐removal). However, in the riverine grassland the treatments increased the cycling of the small pool of labile N and P compounds resulting in large increases in annual fluxes of especially N. In the unfertilised controls, species establishments balanced more or less species losses during an 11 year period, thus leading to a dynamic equilibrium of the species pool. However, contrary to our hypothesis, addition of the growth‐limiting nutrient led at both sites to a reduction of species diversity even when total biomass remained below critical levels. Species diversity and species evenness were strongly determined by N mineralisation and to a lesser extent by total soil N and extractable P, respectively. Total aboveground biomass of the vegetation was determined by total soil N. Our study shows that patterns found in correlative studies of the relation between plant diversity and soil and vegetation N:P ratio can not be translated into successful experimental manipulations to enhance biodiversity. The most likely explanation is that colonization limitation occurred in the fertilized plots and that not sufficient diaspores of potentially new species could reach and/or colonize the plots to compensate for the species extinctions as a result of increased nutrient supply.  相似文献   

15.
Small headwater fens at high elevations exist in the dry climatic regime of western Colorado, despite increasing demands for water development since the 1800’s. Fens on Grand Mesa have accumulated plant material as peat for thousands of years due to cold temperatures and consistently saturated soils. The peatlands maintain unique plant communities, wildlife habitat, biodiversity, and carbon storage. We located and differentiated 88 fens from 15 wet meadows and 2 marshes on Grand Mesa. Field work included determining vegetation, soils, moisture regimes, and impacts from human activities. All fens were groundwater-supported systems that occurred in depressions and slopes within sedimentary landslide and volcanic glacial till landscapes. Fens occupied 400 ha or less than 1 % of the 46,845 ha research area and ranged in size from 1 to 46 ha. Peat water pH in undisturbed sites ranged from 4.3 to 7.1. Most fens had plant communities dominated by sedges (Carex) with an understory of brown mosses. Variation in vegetation was controlled by stand wetness, water table level, organic C, conductivity (EC), and temperature °C. Fen soils ranged from 13.6 to 44.1 % organic C with a mean of 30.3 %. Species diversity in fens was restricted by cold short growing seasons, stressful anaerobic conditions, and disturbance. Multivariate analysis was used to analyze relationships between vegetation, environmental, and impact variables. Stand wetness, water table level, OC, electrical conductivity (EC), and temperature were used to analyze vegetation variance in undisturbed fens, wet meadows, and marshes. Vegetation composition in impacted fens was influenced by flooding, sedimentation, stand wetness, water table level, OC, EC, and temperature. Hydrologically modified fens supported 58 plant species compared to 101 species in undisturbed fens. Analysis of historical 1936–2007 aerial photographs and condition scalars helped quantify impacts of human activities in fens as well as vegetation changes. Fourteen fens had evidence of peat subsidence, from organic soil collapse, blocks of peat in the margins, soil instability, and differences in surface peat height between the fen soil surface and the annually flooded soil surface. Of 374 ha of fens in the Grand Mesa study area, 294 ha (79 %) have been impacted by human activities such as ditching, drainage, flooding, or vehicular rutting. Many fens had little restoration potential due to severe hydrological and peat mass impacts, water rights, or the cost of restoration.  相似文献   

16.
With the intensification of agricultural practices, formerly species rich marginal grassland communities of high botanical value in the Netherlands have been fertilized or manured since the first part of the twentieth century. This type of land use resulted in a dramatic decrease of the original plant species-richness. In the early 1970's yearly nutrient input to many of these grasslands was ceased as a nature management practice, while hay-cropping was continued. This type of grassland management is carried out to decrease overall nutrient supplying ability of the soil to plant cover in order to restore their original high botanical richness. The effect of this management on the type and the extent of nutrient deficiency was studied by comparing the short-term shoot responsiveness of undisturbed turfs to added nutrients and the nutrient status of fieldgrown dominants of four hay-field communities which were not fertilized for 3, 7, 20 or 25 years.Contrary to expectation, hay-cropping without input of additional nutrients did not impose an increase of species-richness of grassland on gley podzol. During early vegetation change strong inadequacy of N supply and moderate inadequacy of K supply by the soil regulate (shoot) growth. P-deficiency was not established. Prolonged discontinuation of fertilizer application caused concomitant inadequate supplies of N, K and P. In the last field (25 years unfertilized), nutrient deficiencies could not be detected by shoot growth responses to added nutrients but only by a low nutrient status. It appeared that during this type of vegetation change N-deficiency is the most pronounced and that K-deficiency developes much more rapidly than P-deficiency. The strong decline in total aerial pool sizes of N, K and P also emphasizes these simultaneously occurring shifts.We conclude that cut grassland composition on gley podzol soil is regulated by co-deficiencies of at least the soil phytoavailable macronutrients nitrogen, potassium and phosphorus. The absence of change in plant species number is likely not regulated by the nutrient supplying ability of the soil. Seed dispersal from elsewhere seems to be the most important factor.  相似文献   

17.
In the Netherlands, fens that are fed by polluted river water are often eutrophic, whereas fens fed by calcium-rich groundwater often are mesotrophic. Differences in trophic status can not always be attributed to differences in the nutrient load of the water. In this paper we try to determine if the inflow of river water in fens, in fact, accelerates the soil nutrient release, thereby creating more eutrophic conditions (‘internal eutrophication’). For this purpose, we compared nutrient release rates (N, P and K) in soil cores fromSphagnum peat andCarex peat saturated with different media, that were artificially created to mimic the three basic water sources: polluted river water, unpolluted calcium-rich groundwater and rainwater. In addition, we studied the effect of temperature and water level on nutrient release rates. The experiments proved thatSphagnum peat released much more P and ammonium thanCarex peat. The strong site effect proved consistent throughout the water chemistry treatments, which indicates that soil quality may be the most important agent determining nutrient release rates. Nevertheless, it was established that water chemistry and water level are of significant influence on nutrient release rates in peat soils. In particular, river water stimulated P release by the peat, most notably in theSphagnum peat. P-release in both soils was only minor when the soils were incubated in clean Ca-rich groundwater. It is suggested that P release is strongly associated with soil chemical processes, and that high P release rates after incubation in river water are due to the high sulphate content of the water. The net release from the soil of ammonium, potassium and phosphate increased with increasing temperature. A freezing treatment significantly increased nutrient availability. The results of the experiments are examined in the context of hydrologic management strategies for the conservation of fens in agricultural landscapes.  相似文献   

18.
Grassland management intensification can significantly affect the structure and composition of important soil microbial groups such as bacteria and fungi. Changes to these microbial communities can greatly influence carbon (C) and nitrogen (N) cycling in grassland soils. Here we specifically address how microbial abundances might shift under the effect of multiple management practices and how this in turn might relate to changes in soil C and N storage. Soil samples were collected from a 23-year-old grassland experiment and real-time quantitative Polymerase Chain Reaction (PCR) was performed to address whether and how (1) chronic nutrient additions, (2) liming (i.e., the addition of CaCO3 to soils), and (3) grazing by rabbits might affect archaeal, bacterial and fungal microbial groups. We found that liming additions significantly increased archaeal and bacterial abundance whilst strongly reducing fungal abundance. The addition of N-only (as NH4NO3) significantly reduced bacterial abundance while chronic grazing by rabbits resulted in positive effects on archaeal abundance. Despite long-term grassland management significantly affecting soil microbial abundances (and Fungal-to-Bacterial ratios), microbial changes were not related to either changes in soil C or N pools. Overall, our results suggest that (1) important microbial-‘soil functioning’ relationships may only be detected at lower taxonomic levels, and (2) liming-induced increases in soil pH determined significant shifts in soil microbial abundance, which could have important consequences for the delivery of multiple soil ecosystem services (i.e., nutrient regulation, C and N sequestration) from permanent grassland.  相似文献   

19.
Abstract. The hypothesis that mole burrowing activity alters soil nutrient fluxes and that, as a response to the new conditions, a specialized guild of species develops on the molehills, was tested in an area located in the southwestern Spanish Pyrenees, on a spectrum of montane grassland communities that varies from xeric to temporally waterlogged. Evidence for an association between disturbance and nutrient availability was reported for nitrogen. Mole‐disturbed soils had elevated amounts of inorganic nitrogen compared to soils in surrounding pastures. At the first stages of mound revegetation, changes in nitrate flushes and in species competitive relationships following disturbance appeared to facilitate the establishment of ruderal and non‐mycorrhizal species. The diversity of the whole grassland was enhanced by the existence of these sets of species, abundant on mounds and rarer in the pasture. However, the difference was mainly quantitative, as exclusive colonizers of molehills were not found.  相似文献   

20.
Pristine peatlands have generally low nitrous oxide (N2O) emissions but drainage and management practices enhance the microbial processes and associated N2O emissions. It is assumed that leaving peat soils from intensive management, such as agriculture, will decrease their N2O emissions. In this paper we report how the annual N2O emission rates will change when agricultural peat soil is either left abandoned or afforested and also N2O emissions from afforested peat extraction sites. In addition, we evaluated a biogeochemical model (DNDC) with a view to explaining GHG emissions from peat soils under different land uses. The abandoned agricultural peat soils had lower mean annual N2O emissions (5.5?±?5.4?kg?N?ha?1) than the peat soils in active agricultural use in Finland. Surprisingly, N2O emissions from afforested organic agricultural soils (12.8?±?9.4?kg?N?ha?1) were similar to those from organic agricultural soils in active use. These emissions were much higher than those from the forests on nutrient rich peat soils. Abandoned and afforested peat extraction sites emitted more N2O, (2.4?±?2.1?kg?N?ha?1), than the areas under active peat extraction (0.7?±?0.5?kg?N?ha?1). Emissions outside the growing season contributed significantly, 40% on an average, to the annual emissions. The DNDC model overestimated N2O emission rates during the growing season and indicated no emissions during winter. The differences in the N2O emission rates were not associated with the age of the land use change, vegetation characteristics, peat depth or peat bulk density. The highest N2O emissions occurred when the soil C:N ratio was below 20 with a significant variability within the measured C:N range (13–27). Low soil pH, high nitrate availability and water table depth (50–70?cm) were also associated with high N2O emissions. Mineral soil has been added to most of the soils studied here to improve the fertility and this may have an impact on the N2O emissions. We infer from the multi-site dataset presented in this paper that afforestation is not necessarily an efficient way to reduce N2O emissions from drained boreal organic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号