首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The in vivo highly tissue-dependent abscisic acid (ABA) specific-binding sites localized in cytosol were identified and characterized in the flesh of developing apple ( Malus pumila L. cv. Starkrimon) fruits. ABA binding activity was scarcely detectable in the microsomes and the cytosolic fraction isolated from the freshly harvested fruits via an in vitro ABA binding incubation of the subcellular fractions. If, however, instead that the subcellular fractions were in vitro incubated in H-ABA binding medium, the flesh tissue discs were directly in vivo incubated in H-ABA binding medium, a high ABA binding activity to the cytosolic fraction isolated from these tissue discs was detected. The in vivo ABA binding capacity of the cytosolic fraction was lost if the tissue discs had been pretreated with boiling water, indicating that the ABA binding needs a living state of tissue. The in vivo tissue-dependent binding sites were shown to possess protein nature with both active serine residua and thiol-group of cysteine residua in their functional binding center. The ABA binding of the in vivo tissue-dependent ABA binding sites to the cytosolic fraction was shown to be saturable, reversible, and of high affinity. The scatchard plotting gave evidence of two different classes of ABA binding proteins, one with a higher affinity ( Kd =2.9 nmol/L) and the other with lower affinity ( Kd =71.4 nmol/L). Phaseic acid, 2- trans -4- trans -ABA or cis-trans -(-)-ABA had substantially no affinity to the binding proteins, indicating their stereo-specificity to bind physiologically active ABA. The time course, pH- and temperature-dependence of the in vivo tissue-dependent binding proteins were determined. It is hypothesized that the detected ABA-binding proteins may be putative ABA-receptors that mediate ABA signals during fruit development.  相似文献   

2.
A protein designated ABAP1 and encoded by a novel gene (GenBank accession number AF127388) was purified and shown to specifically bind abscisic acid (ABA). ABAP1 protein is a 472-amino acid polypeptide containing a WW protein interaction domain and is induced by ABA in barley aleurone layers. Polyclonal antiidiotypic antibodies (AB2) cross-reacted with purified ABAP1 and with a corresponding 52-kDa protein associated with membrane fractions of ABA-treated barley aleurones. ABAP1 genes were detected in diverse monocot and dicot species, including wheat, tobacco, alfalfa, garden pea, and oilseed rape. The recombinant ABAP1 protein optimally bound (3)H-(+)-ABA at neutral pH. Denatured ABAP1 protein did not bind (3)H-(+)-ABA, nor did bovine serum albumin. The maximum specific binding as shown by Scatchard plot analysis was 0.8 mol of ABA mol(-1) protein with a linear function of r(2) = 0.94, an indication of one ABA-binding site with a dissociation constant (K(d)) of 28 x 10(-9) m. ABA binding in aleurone plasma membranes showed a maximum binding capacity of 330 nmol of ABA g(-1) protein with a K(d) of 26.5 x 10(-9) m. The similarities in the dissociation constants for ABA binding of the recombinant protein and that of the plasma membranes suggest that the protein within the plasma membrane fraction is the native form of ABAP1. The stereospecificity of ABAP1 was established by the incapability of ABA analogs and metabolites, including (-)-ABA, trans-ABA, phaseic acid, dihydrophaseic acid, and (+)-abscisic acid-glucose ester, to displace (3)H-(+)-ABA bound to ABAP1. However, two ABA precursors, (+)-ABA aldehyde and (+)-ABA alcohol, were able to displace (3)H-(+)-ABA, an indication that the structural requirement of ABAP1 at the C-1 position is not strict. Our data show that ABAP1 exerts high binding affinity for ABA. The interaction is reversible, follows saturation kinetics, and has stereospecificity, thus meeting the criteria for an ABA-binding protein.  相似文献   

3.
By using the micro-volume radio-ligand binding essay (MRLB), the changes in the kinetic characteristics of the ABA binding protein (s) of the Kyoho grapevine (V/t/s vinifera × V. labrusca) fruits during the different stages of fruit development have been studied. The changes in the berry volume growth, concentration of sugar, organic acids and ABA in fruit mesocarp have been determined especially for the studies of ABA-binding protein. The dissociation constant (Kd) and ABA-binding maximum volumes (Bronx)were determined by the Scatchard plots for the ABA-binding protein (s) in microsomes of the fruits. They were: Kd =17.5, 50. 0, 6.3, 13.3 nmol/L: Bmax=98.6, 523.0, 41.6, 85. 4 pmol/g protein respectively for the fruit developmental phase Ⅰ , Ⅱ, veraison and phase Ⅲ. The Scatchard plots showed a rectilinear function for all of the developmental phases including veraison, which suggests in the fruit microsomes at the same developmental phase, the existence of either one kind of the same or several different kinds of ABA-binding sites of identical or similar kinetic characteristics and of high affinity. In different developmental stages, however, changes of the protein at the ABA-binding sites might occur. The binding affinity of ABA-binding protein (s) for ABA was showed to be higher at veraison stage than in other developmental phases and this binding affinity increased nearly by 10 times from the phase Ⅱ to veraison, whereas the concentration (Bmax) of the ABA-binding protein (s) decreased to the minimum at veraison. The reason why such low concentration of ABA at veraison is capable to trigger the onset of fruit ripening might be due to the increase of the affinity of ABA-binding protein (s) for ABA at this time. The possible functions of the ABA-binding protein (s) for fruit development during the different developmental stages were discussed, and it is suggested that the protein (s) detected could be the putative receptor (s) or carrier (s) for the action of this plant hormone in grapevine.  相似文献   

4.
葡萄果实微粒体上存在高亲和力的脱落酸(ABA)结合位点,这些位点与ABA的结合具有饱和性,高亲和力及低容量,胰蛋白酶或DTT处理可以使该位点的特异结合活性下降约90%,表明此结合位点是一种蛋白质,故称为ABA结合蛋白,它含有维系蛋白质特定构象的二硫键,该蛋白与ABA反应的最适pH为6.0,说明与配基结合部位可能存在带有正电荷的氨基酸残基,结合活性在25℃高于0℃,结合反应达到动态平衡需要30min,30min以后结合活性随时间延长而下降。该蛋白与ABA结合反应的平衡解离常数为17.5nmol/L,最大结合容量(Bmax)为98.4fmol/mgprotein。  相似文献   

5.
将苹果(Malus pumila L.cv.Starkrimon)果肉微粒体和细胞可溶组分在含有^3H-ABA的缓冲介质中分别温育,仅在细胞可溶组分中测到微弱的^3H-ABA结合活性。但是,如何将果肉组织圆片在^3H-ABA缓冲介质中直接温育,经制备亚细胞组分后直接测定,在细胞可溶组分中测到很高的^3H-ABA特异结合活性。果肉圆片用沸水预先热处理使细胞可溶组分中的^3H-ABA结合活性完全丧失,说明ABA结合依赖于组织的活体状态。药理实验证明了ABA结合位点的蛋白质性质,同时证明该蛋白的活性中心具有-SH和丝氨酸基因。ABA结合蛋白对ABA的结合具有可饱和性、可逆性和高亲和力。Scatchard作图证明存在2种ABA结合蛋白,一种具有较高的亲和力,其解离常数(Kd)为2.9mmol/L,另一种亲和力相对较低,其Kd值为71.4nmol/L。用ABA结构相似物进行的竞争实验证明了ABA结合蛋白对配体结合的立体特异性。分析了ABA结合蛋白与ABA结合的时间曲线、pH和温度依赖性。本研究检测到的依赖活体组织的ABA结合蛋白可能是果实发育过程中介导ABA信号的受体。  相似文献   

6.
Zhang DP  Wu ZY  Li XY  Zhao ZX 《Plant physiology》2002,128(2):714-725
Purification of abscisic acid (ABA)-binding proteins is considered to constitute a major step toward isolating ABA receptors. We report here that an ABA-binding protein was for the first time, to our knowledge, purified from the epidermis of broad bean (Vicia faba) leaves via affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing electrophoresis, and isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis two-dimensional electrophoresis of the purified ABA-binding protein all identified a single protein band with a molecular mass of 42 kD and an isoelectric point 4.86. The Scatchard plot for the purified protein showed a linear function with a maximum binding activity of 0.87 mol mol(-1) protein and an equilibrium dissociation constant of 21 nM, indicating that the purified protein may be a monomeric one, possessing one binding site. The ABA-binding protein was enriched more than 300-fold with a yield of 14%. (-)ABA and trans-ABA were substantially incapable of displacing (3)H-(+/-)ABA bound to the ABA-binding protein, and (+/-)ABA was less effective than (+)ABA in the competition. These findings allow establishment of the stereospecificity of the 42-kD protein and suggest its ABA receptor nature. Pretreatment of the guard cell protoplasts of broad bean leaves with the monoclonal antibody raised against the 42-kD protein significantly decreased the ABA specific-induced phospholipase D activity in a dose-dependent manner. This physiological significance provides more clear evidence for the potential ABA-receptor nature of the 42-kD protein.  相似文献   

7.
8.
We present an example of expression and purification of a biologically active G-protein coupled receptor (GPCR) from yeast. An expression vector was constructed to encode the Saccharomyces cerevisiae GPCR alpha-factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Ligand binding and signaling assays of the epitope-tagged, mutated receptor showed it maintained the full wild-type biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5% n-dodecyl maltoside (DM). Approximately 120 microg of purified alpha-factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (K(d)) of the purified alpha-factor receptor in DM micelles was 28 nM as compared to K(d)=12.7 nM for Ste2p in cell membranes, and approximately 40% of the purified receptor was correctly folded as judged by ligand saturation binding. About 50% of the receptor sequence was retrieved from MALDI-TOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the alpha-factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.  相似文献   

9.
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA.  相似文献   

10.
The present experiment, involving both the in vivo injection of abscislc acid (ABA) Into apple (Malus domestica Brohk.) fruits and the in vivo Incubation of fruit tissues in ABA-contalnlng medium, revealed that ABA activates both soluble and cell wall-bound acid invertases. Immunoblottlng and enzyme-linked Immunosorbent assays showed that this ABA-induced acid invertase activation is Independent of the amount of enzyme present. The acid Invertase activation induced by ABA is dependent on medium pH, time course, ABA dose, living tissue and developmental stage. Two isomers of cls-(+)-ABA, (-)-ABA and trans- ABA, had no effect on acid invertases, showing that ABA-induced acid invertase activation is specific to physiologically active cis-(+)ABA. Protein kinase inhlbltors K252a and H7 as well as acid phosphatase Increased the ABA-Induced effects. These data indicate that ABA specifically activates both soluble and cell wall-bound acid Invertases by a posttranslational mechanism probably Involving reversible protein phosphorylatlon, and this may be one of the mechanisms by which ABA Is Involved In regulating fruit development.  相似文献   

11.
Bacterial chondroitin polymerase K4CP is a multifunctional enzyme with two active sites. K4CP catalyzes alternative transfers of glucoronic acid (GlcA) and N-acetylgalactosamine (GalNAc) to elongate a chain consisting of the repeated disaccharide sequence GlcAbeta1-3GalNAcbeta1-4. Unlike the polymerization reactions of DNA and RNA and polypeptide synthesis, which depend upon templates, the monosaccharide polymerization by K4CP does not. To investigate the catalytic mechanism of this reaction, we have used isothermal titration calorimetry to determine the binding of the donor substrates UDP-GlcA and UDP-GalNAc to purified K4CP protein and its mutants. Only one donor molecule bound to one molecule of K4CP at a time. UDP-GlcA bound only to the C-terminal active site at a high affinity (K(d)=6.81 microm), thus initiating the polymerization reaction. UDP-GalNAc could bind to either the N-terminal or C-terminal active sites at a low affinity (K(d)=266-283 microm) but not to both sites at the same time. The binding affinity of UDP-GalNAc to a K4CP N-terminal fragment (residues 58-357) was profoundly decreased, yielding the average K(d) value of 23.77 microm, closer to the previously reported K(m) value for the UDP-GalNAc transfer reaction that takes place at the N-terminal active site. Thus, the first step of the reaction appears to be the binding of UDP-GlcA to the C-terminal active site, whereas the second step involves the C-terminal region of the K4CP molecule regulating the binding of UDP-GalNAc to only the N-terminal active site. Alternation of these two specific bindings advances the polymerization reaction by K4CP.  相似文献   

12.
Dramatic increases in H2O2 levels have been observed following abscisic acid (ABA) treatment of plant tissues. Following ABA treatment in aleurone cells, H2O2 reached transient levels of approximately 115 micromol/L H2O2. To determine whether ABA perception was modified by such changes, the effect of H2O2 on a recently characterized ABA-binding protein (ABAP1), cloned from barley aleurone layers, was examined. ABA binding to the protein was weakened by H2O2 in a concentration-dependent manner. A concentration of 75 micromol/L H2O2 gave a 50% decline in ABA binding in a reaction following first-order kinetics, indicative of binding-site susceptibility to its microenvironment. We monitored the unfolding of ABAP1 using steady-state and time-resolved tryptophan fluorescence, while following the capacity of ABAP1 to bind ABA. ABA binding decreased by 50% following ABAP1 denaturation with 1 mol/L guanidine hydrochloride or 2 mol/L urea, while the maximum emission spectra (lambda emi) red shifted from 338 to 347 nm at 3.5 mol/L guanidine hydrochloride and 5 mol/L urea. However, only a slight blue shift of lambda emi was observed following either ABAP1 incubation with H2O2 or binding to (+)-ABA (physiologically active ABA). The equilibrium ABA dissociation rate accelerated in the presence of 250 micromol/L H2O2, with the half-time dissociation reduced to 8 min. A comparison of inactivation kinetics and conformational changes shows that inactivation of ABAP1 occurs before any noticeable conformational change. This suggests that the ABA binding site is highly responsive to its microenvironment and is situated in a region that is more flexible than the protein molecule as a whole. The results demonstrate that H2O2, generated by ABA treatment of aleurone layers, is sufficient to affect the ABA-binding capacity of ABAP1, suggesting that this may be another level of control of ABA signal transduction.  相似文献   

13.
Plant hormone abscisic acid (ABA) plays important roles in dormancy and stress responses, but its binding sites have not yet been fully elucidated. In this report, we suggest the utility of biotin-labeled abscisic acid (bioABA) as a probe to investigate ABA-binding sites on the plasma membrane of barley aleurone protoplasts. BioABA was approximately 100 times less effective than ABA in inhibiting expression of gibberellin-inducible alpha-amylase and in inducing expression of a reporter gene fused to the dehydrin promoter. To ascertain that bioABA could bind to ABA-binding sites on the plasma membrane, we used fluorescence flow cytometry to measure the fluorescence intensity of aleurone protoplasts treated with a combination of bioABA and fluorescence-labeled streptavidin. Addition of bioABA increased the fluorescence of aleurone protoplasts in a concentration-dependent manner, but addition of non-active bioABA derivatives did not. Furthermore, the increase in fluorescence intensity observed upon addition of bioABA was eliminated by co-treatment with excess ABA, but it was not eliminated by co-treatment with other plant hormones. These results suggest that bioABA binds to ABA-binding sites, and that bioABA should be a valuable probe for investigating ABA-binding sites on the plasma membrane.  相似文献   

14.
Although the rate limiting step in mitochondrial fatty acid oxidation, catalyzed by carnitine palmitoyl transferase I (CPTI), utilizes long-chain fatty acyl-CoAs (LCFA-CoA) as a substrate, how LCFA-CoA is transferred to CPTI remains elusive. Based on secondary structural predictions and conserved tryptophan residues, the cytoplasmic C-terminal domain was hypothesized to be the LCFA-CoA binding site and important for interaction with cytoplasmic LCFA-CoA binding/transport proteins to provide a potential route for LCFA-CoA transfer. To begin to address this question, the cytoplasmic C-terminal region of liver CPTI (L-CPTI) was recombinantly expressed and purified. Data herein showed for the first time that the L-CPTI C-terminal 89 residues were sufficient for high affinity binding of LCFA-CoA (K (d) = 2-10 nM) and direct interaction with several cytoplasmic LCFA-CoA binding proteins (K (d) < 10 nM), leading to enhanced CPTI activity. Furthermore, alanine substitutions for tryptophan in L-CPTI (W391A and W452A) altered secondary structure, decreased binding affinity for LCFA-CoA, and almost completely abolished L-CPTI activity, suggesting that these amino acids may be important for ligand stabilization necessary for L-CPTI activity. Moreover, while decreased activity of the W452A mutant could be explained by decreased binding of lipid binding proteins, W391 itself seems to be important for activity. These data suggest that both interactions with lipid binding proteins and the peptide itself are important for optimal enzyme activity.  相似文献   

15.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   

16.
Steroid binding sites with high affinity for progesterone (Kd=40+/-14 nM determined by binding, and Kd=71+/-22 nM determined by displacement studies) and lower affinity for 21-hydroxyprogesterone and for testosterone, but no affinity for estradiol-17beta, onapristone and alpha-naphthoflavone were detected in the enriched plasma membrane fraction of the fungus Rhizopus nigricans. The amount of steroid binding sites is in accordance with the value of B(max)=744+/-151 fmol (mg protein)(-1). In the membrane fraction, progesterone induced about 30% activation of G proteins over basal level, as determined by GTPase activity (EC50=32+/-8 nM) and by the guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding rate (EC50=61+/-21 nM). The affinity of receptors for progesterone was substantially decreased in the presence of GTPgammaS and of cholera toxin. Our results suggest the existence of progesterone receptors in the membrane of Rhizopus nigricans and their coupling to G proteins.  相似文献   

17.
The phytohormone abscisic acid ((+)-ABA) plays a key role in many processes. The biological and biochemical activities of unnatural (−)-ABA have been extensively investigated since 1960s. However, the recognition mechanism by which only a few members among PYR/PYL/RCAR (PYLs) family can bind (−)-ABA remains largely unknown. Here we systematically characterized the affinity of PYLs binding to the (−)-ABA and reported the crystal structures of apo-PYL5, PYL3-(−)-ABA and PYL9-(+)-ABA. PYL5 showed the strongest binding affinity with (−)-ABA among all the PYLs. PYL9 is a stringently exclusive (+)-ABA receptor with interchangeable disulfide bonds shared by a subclass of PYLs. PYL3 is a dual receptor to both ABA enantiomers. The binding orientation and pocket of (−)-ABA in PYLs are obviously different from those of (+)-ABA. Steric hindrance and hydrophobic interaction are the two key factors in determining the stereospecificity of PYLs binding to (−)-ABA, which is further confirmed by gain-of-function and loss-of-function mutagenesis. Our results provide novel insights of the bioactivity of ABA enantiomers onto PYLs, and shed light on designing the selective ABA receptors agonists.  相似文献   

18.
Structural analogues of the phytohormone (+)-abscisic acid (ABA) have been synthesized and tested as inhibitors of the catabolic enzyme (+)-ABA 8'-hydroxylase. Assays employed microsomes from suspension-cultured corn cells. Four of the analogues [(+)-8'-acetylene-ABA, (+)-9'-propargyl-ABA, (-)-9'-propargyl-ABA, and (+)-9'-allyl-ABA] proved to be suicide substrates of ABA 8'-hydroxylase. For each suicide substrate, inactivation required NADPH, increased with time, and was blocked by addition of the natural substrate, (+)-ABA. The most effective suicide substrate was (+)-9'-propargyl-ABA (K(I) = 0.27 microM). Several analogues were competitive inhibitors of ABA 8'-hydroxylase, of which the most effective was (+)-8'-propargyl-ABA (K(i) = 1.1 microM). Enzymes in the microsomal extracts also hydroxylated (-)-ABA at the 7'-position at a low rate. This activity was not inhibited by the suicide substrates, showing that the 7'-hydroxylation of (-)-ABA was catalyzed by a different enzyme from that which catalyzed 8'-hydroxylation of (+)-ABA. Based on the results described, a simple model for the positioning of substrates in the active site of ABA 8'-hydroxylase is proposed. In a representative physiological assay, inhibition of Arabidopsis thaliana seed germination, (+)-9'-propargyl-ABA and (+)-8'-acetylene-ABA exhibited substantially stronger hormonal activity than (+)-ABA itself.  相似文献   

19.
New ferulic acid and benzothiazole dimer derivatives were synthesized and evaluated by in vitro competition assay using [(125)I]TZDM for their specific binding affinities to Abeta fibrils. In particular, 4a showed the most excellent binding affinity (K(i)=0.53 nM), compared to PIB (K(i)=0.77 nM), for benzothiazole binding sites of Abeta(1-42) fibrils. This result suggests a possibility of a potential AD diagnostic probe for detection of Abeta fibrils.  相似文献   

20.
A substituted 4-aminopiperidine was identified as showing activity in an MCH assay from an HTS effort. Subsequent structural modification of the scaffold led to the identification of a number of active MCH antagonists. 3,5-Dimethoxy-N-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)benzamide (5c) was among those with the highest binding affinity to the MCH receptor (K(i)=27nM), when variations were made at benzoyl and naphthylmethyl substitution sites from the initial HTS hit. Further optimization via piperidine ring contraction resulted in enhanced MCH activity in a 3-aminopyrrolidine series, where (R)-3,5-dimethoxy-N-(1-(naphthalen-2-ylmethyl)-pyrrolidin-3-yl)benzamide (10i) was found to be an excellent MCH antagonist (K(i)=7nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号