首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6–40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.  相似文献   

3.
4.
5.
6.
7.
Due to the advent of the so-called Next-Generation Sequencing (NGS) technologies the amount of monetary and temporal resources for whole-genome sequencing has been reduced by several orders of magnitude. Sequence reads can be assembled either by anchoring them directly onto an available reference genome (classical reference assembly), or can be concatenated by overlap (de novo assembly). The latter strategy is preferable because it tends to maintain the architecture of the genome sequence the however, depending on the NGS platform used, the shortness of read lengths cause tremendous problems the in the subsequent genome assembly phase, impeding closing of the entire genome sequence. To address the problem, we developed a multi-pronged hybrid de novo strategy combining De Bruijn graph and Overlap-Layout-Consensus methods, which was used to assemble from short reads the entire genome of Corynebacterium pseudotuberculosis strain I19, a bacterium with immense importance in veterinary medicine that causes Caseous Lymphadenitis in ruminants, principally ovines and caprines. Briefly, contigs were assembled de novo from the short reads and were only oriented using a reference genome by anchoring. Remaining gaps were closed using iterative anchoring of short reads by craning to gap flanks. Finally, we compare the genome sequence assembled using our hybrid strategy to a classical reference assembly using the same data as input and show that with the availability of a reference genome, it pays off to use the hybrid de novo strategy, rather than a classical reference assembly, because more genome sequences are preserved using the former.  相似文献   

8.
Next-Generation-Sequencing is advantageous because of its much higher data throughput and much lower cost compared with the traditional Sanger method. However, NGS reads are shorter than Sanger reads, making de novo genome assembly very challenging. Because genome assembly is essential for all downstream biological studies, great efforts have been made to enhance the completeness of genome assembly, which requires the presence of long reads or long distance information. To improve de novo genome assembly, we develop a computational program, ARF-PE, to increase the length of Illumina reads. ARF-PE takes as input Illumina paired-end (PE) reads and recovers the original DNA fragments from which two ends the paired reads are obtained. On the PE data of four bacteria, ARF-PE recovered >87% of the DNA fragments and achieved >98% of perfect DNA fragment recovery. Using Velvet, SOAPdenovo, Newbler, and CABOG, we evaluated the benefits of recovered DNA fragments to genome assembly. For all four bacteria, the recovered DNA fragments increased the assembly contiguity. For example, the N50 lengths of the P. brasiliensis contigs assembled by SOAPdenovo and Newbler increased from 80,524 bp to 166,573 bp and from 80,655 bp to 193,388 bp, respectively. ARF-PE also increased assembly accuracy in many cases. On the PE data of two fungi and a human chromosome, ARF-PE doubled and tripled the N50 length. However, the assembly accuracies dropped, but still remained >91%. In general, ARF-PE can increase both assembly contiguity and accuracy for bacterial genomes. For complex eukaryotic genomes, ARF-PE is promising because it raises assembly contiguity. But future error correction is needed for ARF-PE to also increase the assembly accuracy. ARF-PE is freely available at http://140.116.235.124/~tliu/arf-pe/.  相似文献   

9.
10.
11.
12.
13.
A hybrid de novo assembly pipeline was constructed to utilize both MiSeq and SOLiD short read data in combination in the assembly. The short read data were converted to a standard format of the pipeline, and were supplied to the pipeline components such as ABySS and SOAPdenovo. The assembly pipeline proceeded through several stages, and either MiSeq paired-end data, SOLiD mate-paired data, or both of them could be specified as input data at each stage separately. The pipeline was examined on the filamentous fungus Aspergillus oryzae RIB40, by aligning the assembly results against the reference sequences. Using both the MiSeq and the SOLiD data in the hybrid assembly, the alignment length was improved by a factor of 3 to 8, compared with the assemblies using either one of the data types. The number of the reproduced gene cluster regions encoding secondary metabolite biosyntheses (SMB) was also improved by the hybrid assemblies. These results imply that the MiSeq data with long read length are essential to construct accurate nucleotide sequences, while the SOLiD mate-paired reads with long insertion length enhance long-range arrangements of the sequences. The pipeline was also tested on the actinomycete Streptomyces avermitilis MA-4680, whose gene is known to have high-GC content. Although the quality of the SOLiD reads was too low to perform any meaningful assemblies by themselves, the alignment length to the reference was improved by a factor of 2, compared with the assembly using only the MiSeq data.  相似文献   

14.

Background

The relatively short read lengths from next generation sequencing (NGS) technologies still pose a challenge for de novo assembly of complex mammal genomes. One important solution is to use paired-end (PE) sequence information experimentally obtained from long-range DNA fragments (>1 kb). Here, we characterize and extend a long-range PE library construction method based on direct intra-molecule ligation (or molecular linker-free circularization) for NGS.

Results

We found that the method performs stably for PE sequencing of 2- to 5- kb DNA fragments, and can be extended to 10–20 kb (and even in extremes, up to ∼35 kb). We also characterized the impact of low quality input DNA on the method, and develop a whole-genome amplification (WGA) based protocol using limited input DNA (<1 µg). Using this PE dataset, we accurately assembled the YanHuang (YH) genome, the first sequenced Asian genome, into a scaffold N50 size of >2 Mb, which is over100-times greater than the initial size produced with only small insert PE reads(17 kb). In addition, we mapped two 7- to 8- kb insertions in the YH genome using the larger insert sizes of the long-range PE data.

Conclusions

In conclusion, we demonstrate here the effectiveness of this long-range PE sequencing method and its use for the de novo assembly of a large, complex genome using NGS short reads.  相似文献   

15.
16.
17.
18.
19.
20.
Despite the ever-increasing output of next-generation sequencing data along with developing assemblers, dozens to hundreds of gaps still exist in de novo microbial assemblies due to uneven coverage and large genomic repeats. Third-generation single-molecule, real-time (SMRT) sequencing technology avoids amplification artifacts and generates kilobase-long reads with the potential to complete microbial genome assembly. However, due to the low accuracy (~85%) of third-generation sequences, a considerable amount of long reads (>50X) are required for self-correction and for subsequent de novo assembly. Recently-developed hybrid approaches, using next-generation sequencing data and as few as 5X long reads, have been proposed to improve the completeness of microbial assembly. In this study we have evaluated the contemporary hybrid approaches and demonstrated that assembling corrected long reads (by runCA) produced the best assembly compared to long-read scaffolding (e.g., AHA, Cerulean and SSPACE-LongRead) and gap-filling (SPAdes). For generating corrected long reads, we further examined long-read correction tools, such as ECTools, LSC, LoRDEC, PBcR pipeline and proovread. We have demonstrated that three microbial genomes including Escherichia coli K12 MG1655, Meiothermus ruber DSM1279 and Pdeobacter heparinus DSM2366 were successfully hybrid assembled by runCA into near-perfect assemblies using ECTools-corrected long reads. In addition, we developed a tool, Patch, which implements corrected long reads and pre-assembled contigs as inputs, to enhance microbial genome assemblies. With the additional 20X long reads, short reads of S. cerevisiae W303 were hybrid assembled into 115 contigs using the verified strategy, ECTools + runCA. Patch was subsequently applied to upgrade the assembly to a 35-contig draft genome. Our evaluation of the hybrid approaches shows that assembling the ECTools-corrected long reads via runCA generates near complete microbial genomes, suggesting that genome assembly could benefit from re-analyzing the available hybrid datasets that were not assembled in an optimal fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号