首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Shiraia bambusicola P. Henn. is a pathogenic fungus of bamboo, and its fruiting bodies are regarded as folk medicine. We determined and analyzed its complete mitochondrial DNA sequence (circular DNA molecule of 39,030 bp, G + C content of 25.19%). It contains the typical genes encoding proteins involved in electron transport and coupled oxidative phosphorylation (nad1-6 and nad4L, cob and cox1-3), one ATP synthase subunit (atp6), 4 hypothetical proteins, and two genes for large and small rRNAs (rnl and rns). There is a set of 32 tRNA genes comprising all 20 amino acids, and these genes are evenly distributed on the two strands. Phylogenetic analyses based on concatenated mitochondrial proteins indicated that S. bambusicola clustered with members of the order Pleosporales, which is in agreement with previous results. The gene arrangements of Dothideomycetes species contained three regions of gene orders partitioned in their mitochondrial genomes, including block 1 (nad6-atp6), block 2 (nad1-cox3) and block 3 (genes around rns). S. bambusicola displayed unique special features that differed from the other Pleosporales species, especially in the coding regions around rns (trnR-trnY). Moreover, a comparison of gene orders in mitochondrial genomes from Pezizomycotina revealed that although all encoded regions are located on the same strand in most Pezizomycotina mtDNAs, genes from Dothideomycetes species had different orientations, as well as diverse positions and colocalization of genes (such as cox3, cox1-cox2 and nad2–nad3); these distinctions were regarded as class-specific features. Interestingly, two incomplete copies of the atp6 gene were found on different strands of the mitogenomic DNA, a finding that has not been observed in the other analyzed fungal species. In our study, mitochondrial genomes from Dothideomycetes species were comprehensively analyzed for the first time, including many species that have not appeared in previous reports.  相似文献   

3.

Background

Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant.

Methods

Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method.

Conclusions

This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.  相似文献   

4.
We determined complete mitochondrial DNA sequences of the two yeast species, Candida orthopsilosis and Candida metapsilosis, and compared them with the linear mitochondrial genome of their close relative, C.parapsilosis. Mitochondria of all the three species harbor compact genomes encoding the same set of genes arranged in the identical order. Differences in the length of these genomes result mainly from the presence/absence of introns. Multiple alterations were identified also in the sequences of the ribosomal and transfer RNAs, and proteins. However, the most striking feature of C.orthopsilosis and C.metapsilosis is the existence of strains differing in the molecular form of the mitochondrial genome (circular-mapping versus linear). Their analysis opens a unique window for understanding the role of mitochondrial telomeres in the stability and evolution of molecular architecture of the genome. Our results indicate that the circular-mapping mitochondrial genome derived from the linear form by intramolecular end-to-end fusions. Moreover, we suggest that the linear mitochondrial genome evolved from a circular-mapping form present in a common ancestor of the three species and, at the same time, the emergence of mitochondrial telomeres enabled the formation of linear monomeric DNA forms. In addition, comparison of isogenic C.metapsilosis strains differing in the form of the organellar genome suggests a possibility that, under some circumstances, the linearity and/or the presence of telomeres provide a competitive advantage over a circular-mapping mitochondrial genome.  相似文献   

5.
6.
7.

Background

Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes.

Methodology/Principal Findings

We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes.

Conclusion

The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.  相似文献   

8.
9.
Simple sequence repeats (SSRs) or microsatellites are one of the most popular sources of genetic markers and play a significant role in gene function and genome organization. We identified SSRs in the genome of Ganoderma lucidum and analyzed their frequency and distribution in different genomic regions. We also compared the SSRs in G. lucidum with six other Agaricomycetes genomes: Coprinopsis cinerea, Laccaria bicolor, Phanerochaete chrysosporium, Postia placenta, Schizophyllum commune and Serpula lacrymans. Based on our search criteria, the total number of SSRs found ranged from 1206 to 6104 and covered from 0.04% to 0.15% of the fungal genomes. The SSR abundance was not correlated with the genome size, and mono- to tri-nucleotide repeats outnumbered other SSR categories in all of the species examined. In G. lucidum, a repertoire of 2674 SSRs was detected, with mono-nucleotides being the most abundant. SSRs were found in all genomic regions and were more abundant in non-coding regions than coding regions. The highest SSR relative abundance was found in introns (108 SSRs/Mb), followed by intergenic regions (84 SSRs/Mb). A total of 684 SSRs were found in the protein-coding sequences (CDSs) of 588 gene models, with 81.4% of them being tri- or hexa-nucleotides. After scanning for InterPro domains, 280 of these genes were successfully annotated, and 215 of them could be assigned to Gene Ontology (GO) terms. SSRs were also identified in 28 bioactive compound synthesis-related gene models, including one 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), three polysaccharide biosynthesis genes and 24 cytochrome P450 monooxygenases (CYPs). Primers were designed for the identified SSR loci, providing the basis for the future development of SSR markers of this medicinal fungus.  相似文献   

10.
11.
To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorga-nization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other re-ported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non- conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.  相似文献   

12.
In order to study the evolution of mitochondrial genomes in the early branching lineages of the monocotyledons, i.e., the Acorales and Alismatales, we are sequencing complete genomes from a suite of key taxa. As a starting point the present paper describes the mitochondrial genome of Butomus umbellatus (Butomaceae) based on next-generation sequencing data. The genome was assembled into a circular molecule, 450,826 bp in length. Coding sequences cover only 8.2% of the genome and include 28 protein coding genes, four rRNA genes, and 12 tRNA genes. Some of the tRNA genes and a 16S rRNA gene are transferred from the plastid genome. However, the total amount of recognized plastid sequences in the mitochondrial genome is only 1.5% and the amount of DNA transferred from the nucleus is also low. RNA editing is abundant and a total of 557 edited sites are predicted in the protein coding genes. Compared to the 40 angiosperm mitochondrial genomes sequenced to date, the GC content of the Butomus genome is uniquely high (49.1%). The overall similarity between the mitochondrial genomes of Butomus and Spirodela (Araceae), the closest relative yet sequenced, is low (less than 20%), and the two genomes differ in size by a factor 2. Gene order is also largely unconserved. However, based on its phylogenetic position within the core alismatids Butomus will serve as a good reference point for subsequent studies in the early branching lineages of the monocotyledons.  相似文献   

13.

Background

Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp.

Results

We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes.

Conclusions

Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-561) contains supplementary material, which is available to authorized users.  相似文献   

14.
ABSTRACT. Analysis of total DNA isolated from the Chrysophyte alga Ochromonas danica revealed, in addition to nuclear DNA, two genomes present as numerous copies per cell. The larger genome (?120 kilobase pairs or kbp) is the plastid DNA, which is identified by its hybridization to plasmids containing sequences for the photosynthesis genes rbcL, psbA, and psbC. The smaller genome (40 kbp) is the mitochondrial genome as identified by its hybridization with plasmids containing gene sequences of plant cytochrome oxidase subunits I and II. Both the 120- and 40-kbp genomes contain genes for the small and large subunits of rDNA. The mitochondrial genome is linear with terminal inverted repeats of about 1.6 kbp. Two other morphologically similar species were examined, Ochromonas minuta and Poteriochromonas malhamensis. All three species have linear mitochondrial DNA of 40 kbp. Comparisons of endonuclease restriction-fragment patterns of the mitochondrial and chloroplast DNAs as well as those of their nuclear rDNA repeats failed to reveal any fragment shared by any two of the species. Likewise, no common fragment size was detected by hybridization with plasmids containing heterologous DNA or with total mitochondrial DNA of O. danica; these observations support the taxonomic assignment of these three organisms to different species. The Ochromonas mitochondrial genomes are the first identified in the chlorophyll a/c group of algae. Combining these results with electron microscopic observations of putative mitochondrial genomes reported for other chromophytes and published molecular studies of other algal groups suggests that all classes of eukaryote algae may have mitochondrial genomes < 100 kbp in size, more like other protistans than land plants.  相似文献   

15.
Reduction in size of flagellated chlorophytes occurred multiple times during evolution, providing the opportunity to study the consequences of cell reduction on genome architecture. Recent investigations on the chloroplast genomes of the tiny prasinophyceans Ostreococcus tauri (Mamiellales), Micromonas sp. RCC299 (Mamiellales), and Pycnococcus provasolii (Pseudocourfieldiales) highlighted their extreme compaction and reduced gene repertoires. Genome compaction is also exemplified by the Ostreococcus and Micromonas mitochondrial DNAs (mtDNAs) although they have retained almost all of the about 65 genes presumably present in the mitochondria of ancestral prasinophyceans. In this study, the mitochondrial genome of Pycnococcus was sequenced and compared to those of previously examined chlorophytes. Our results document the first case where cellular reduction of a free-living alga was accompanied by marked reduction in gene content of both the mitochondrial and chloroplast genomes. At 24,321 bp, the intronless Pycnococcus mitochondrial genome falls within the lower size range displayed by green algal mtDNAs. The 36 conserved genes, specifying two rRNAs with conventional structures, 16 tRNAs and 18 proteins, are all encoded on the same DNA strand and represent 88% of the genome. Besides a pronounced codon bias, the protein-coding genes feature a variant genetic code characterized by the use of TGA (normally a stop codon) to code for tryptophan, and the unprecedented use of TTA and TTG (normally leucine codons) as stop codons. We conclude that substantial reduction of the mitochondrial genome occurred in at least three independent chlorophyte lineages and that this process entailed a number of convergent changes in these lineages.  相似文献   

16.
Handa H 《Nucleic acids research》2003,31(20):5907-5916
The entire mitochondrial genome of rapeseed (Brassica napus L.) was sequenced and compared with that of Arabidopsis thaliana. The 221 853 bp genome contains 34 protein-coding genes, three rRNA genes and 17 tRNA genes. This gene content is almost identical to that of Arabidopsis. However the rps14 gene, which is a pseudo-gene in Arabidopsis, is intact in rapeseed. On the other hand, five tRNA genes are missing in rapeseed compared to Arabidopsis, although the set of mitochondrially encoded tRNA species is identical in the two Cruciferae. RNA editing events were systematically investigated on the basis of the sequence of the rapeseed mitochondrial genome. A total of 427 C to U conversions were identified in ORFs, which is nearly identical to the number in Arabidopsis (441 sites). The gene sequences and intron structures are mostly conserved (more than 99% similarity for protein-coding regions); however, only 358 editing sites (83% of total editings) are shared by rapeseed and Arabidopsis. Non-coding regions are mostly divergent between the two plants. One-third (about 78.7 kb) and two-thirds (about 223.8 kb) of the rapeseed and Arabidopsis mitochondrial genomes, respectively, cannot be aligned with each other and most of these regions do not show any homology to sequences registered in the DNA databases. The results of the comparative analysis between the rapeseed and Arabidopsis mitochondrial genomes suggest that higher plant mitochondria are extremely conservative with respect to coding sequences and somewhat conservative with respect to RNA editing, but that non-coding parts of plant mitochondrial DNA are extraordinarily dynamic with respect to structural changes, sequence acquisition and/or sequence loss.  相似文献   

17.
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).  相似文献   

18.
Medicinal mushrooms have been used in various treatments from a very long time, among which, Ganoderma lucidum is one of the most important medicinal mushroom. It is cultivated worldwide to meet its ever-increasing demand in the market. It is generally cultivated by bed log (Sawdust) and wood log (billet) method. This study was an attempt to observe the growth performance of G. lucidum on poplar billets (Populus deltoides) in the Sherpur Village (Dehradun) and Manjgaun village (Tehri Garhwal) of Garhwal Himalaya, India. The farmers’ field with empty house/ rooms having proper growing conditions especially humidity and light were used for the cultivation of G. lucidum. The G. lucidum spawn was inoculated in poplar wood billets and these billets were installed in well prepared soil. The results demonstrated that cropping cycle of G. lucidum was shorter (132–136 days) in Sherpur Village (Dehradun) as compared to Manjgaun village (141–145 days) in Tehri Garhwal. Further the results also revealed that yield was decreased in the subsequent flushes. In Village Sherpur, the fruiting bodies of G. lucidum were harvested between 64-66 days, 100-101  days and 135-136  days during first, second and third flush after the installation of billets, respectively. However; in village Manjgaun, the fruiting bodies of G. lucidum were harvested between 69 and 71 days, 107-108  days and 144-145 days in first, second and third after the installation of billets respectively. Warmer temperature in Village Sherpur resulted in the early emergence and development of the fruiting bodies as compared to village Manjgaun where pinhead and fruiting body development was delayed due to the lower temperature during cropping cycle.  相似文献   

19.
The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3′ end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号