首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A modified DNA microarray-based technique was devised for preliminary screening of short fragment genomic DNA libraries from three Vicia species (V. melanops, V. narbonensis, and V. sativa) to isolate representative highly abundant DNA sequences that show different distribution patterns among related legume species. The microarrays were sequentially hybridized with labeled genomic DNAs of thirteen Vicia and seven other Fabaceae species and scored for hybridization signals of individual clones. The clones were then assigned to one of the following groups characterized by hybridization to: (1) all tested species, (2) most of the Vicia and Pisum species, (3) only a few Vicia species, and (4) preferentially a single Vicia species. Several clones from each group, 65 in total, were sequenced. All Group I clones were identified as rDNA genes or fragments of chloroplast genome, whereas the majority of Group II clones showed significant homologies to retroelement sequences. Clones in Groups III and IV contained novel dispersed repeats with copy numbers 102–106/1C and two genus-specific tandem repeats. One of these belongs to the VicTR-B repeat family, and the other clone (S12) contains an amplified portion of the rDNA intergenic spacer. In situ hybridization using V. sativa metaphase chromosomes revealed the presence of the S12 sequences not only within rDNA genes, but also at several additional loci. The newly identified repeats, as well as the retroelement-like sequences, were characterized with respect to their abundance within individual genomes. Correlations between the repeat distributions and the current taxonomic classification of these species are discussed.  相似文献   

2.
The nuclear ribosomal repeats for the 18S, 5.8S, and 26S RNAs of two closely related Picea (spruce) species were characterized by restriction mapping and Southern blot hybridization. Restriction polymorphisms were identified in the IGS and ITS sequences; however, no polymorphism was species specific. As many as five different rDNA repeat units were observed in individual genomes. The repeat size for these gymnosperms ranged from a minimum of 32 kbp to greater than 40 kbp, two- to threefold larger than the typical angiosperm rDNA unit. Slot-blot hybridizations were used to determine the nuclear rDNA copy concentration. Among P. rubens individuals threefold variation was observed in the rDNA copy concentration, and among P. mariana individuals such variation was as much as sixfold. At a size greater than 32 kbp and at a concentration averaging 1.2-1.3 x 10(4) copies/pg, the rDNA constitutes approximately 4% of the total genome. Regression analysis revealed a significant relationship between copy concentration of the rDNA repeat unit in P. rubens and geographic origins. Differences in the rDNA content in Picea could contribute to the variation, in overall genome size, that has been observed within conifer species.  相似文献   

3.
Summary In the eightDrosophila species of themelanogaster subgroup, the mitochondrial DNA (mtDNA) contains an A+T-rich region in which replication originates. The length of this region, in contrast with that of the coding part of the genome, varies extensively among these species. The A+T-rich region ranges from about 1kbp inD. yakuba, D. teissieri, D. erecta, andD. orena to 5 kbp inD. melanogaster, D. simulans, D. mauritiana, andD. sechellia. The difference in size is due in part to the amplification, in the species with long genomes, of a 470-bp sequence that is present only once in each of the four species with short genomes.Usually three to six repeats of this sequence occur in direct tandem repetition in the species with long genomes. The sequence is characterized by the relative positions of the Hpa I and Acc I cleavage sites. Comparative study of the genomes found in the species with long mtDNA molecules reveals relative homogeneity of the repeat units within a given genome, which contrasts with the variability found among the repeats of different genomes. This result is suggestive of a process of a concerted evolution.The examination of heteroplasmic flies of three species (D. simulans, D. mauritiana, andD. sechellia) has shed light on this process. In most cases the molecular types of mtDNA present in a heteroplasmic individual differ by one repeat unit. Addition or deletion of this sequence appears to be the original mutational event generating transient heteroplasmy. Cycles of addition or deletion may consequently maintain the intragenomic homogeneity of the repeats.Finally, we have analyzed an exceptional isofemale line in which three molecular lengths of mtDNA are found (molecules with four, five, and six repeats, respectively). Individual offspring of this line carry from one to three of the molecular types, in all combinations. This indicates that the remodeling of the mitochondrial genome occurs through a mechanism that is at present unknown, but that is site specific and rather frequent.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

4.
A C Chinault  J Carbon 《Gene》1979,5(2):111-126
A set of four plasmids containing overlapping segments comprising a total of about 30 kbp of cloned DNA from chromosome III of yeast (Saccharomyces cerevisiae) has been isolated and characterized by restriction endonuclease analyses and DNA:DNA hybridizations. Colony hybridization was carried out with labeled pYe(leu2)10, a plasmid carrying the yeast leu2 gene, to a bank of bacterial colonies containing recombinant plasmids constructed from the vector ColE1 and random fragments of yeast DNA. This resulted in the detection of two plasmids, pYe11G4 and pYe40C3, with DNA inserts which partially overlap the original cloned segment and contain additional DNA extending in opposite directions on the chromosome. By carrying out a second round of colony hybridization with pYe40C3, the cloned region was further extended in one direction. A region of DNA that is repeated at least ten times in the yeast genome was identified by hybridization of pYe11G4 to an EcoRI digest of total yeast DNA. The procedure described in this paper should allow the isolation of large sections of chromosomes, including non-transcribed regions, surrounding cloned genes.  相似文献   

5.
Mitochondrial plasmids are autonomously replicating genetic elements commonly associated with fungal and plant species. Analysis of several plant and fungal mitochondrial genomes has revealed regions that show significant homology to mitochondrial plasmids, suggesting that plasmids have had a long-term association with their mitochondrial hosts. To assess the degree to which plasmids have invaded fungal mitochondrial genomes, BLAST search parameters were modified to identify plasmid sequences within highly AT-rich mtDNAs, and output data were parsed by E value, score, and sequence complexity. High scoring hits were evaluated for the presence of shared repetitive elements and location within plasmids and mtDNAs. Our searches revealed multiple sites of sequence similarity to four distinct plasmids in the wild-type mtDNA of Neurospora crassa, which collectively comprise more than 2% of the mitochondrial genome. Regions of plasmid similarity were not restricted to plasmids known to be associated with senescence, indicating that all mt plasmids can potentially integrate into mitochondrial DNA. Unexpectedly, plasmid-related sequences were found to be clustered in regions that have disproportionately low numbers of PstI palindromic sequences, suggesting that these repetitive elements may play a role in eliminating foreign DNA. A separate class of GC-rich palindromes was identified that appear to be mobile, as indicated by their occurrence within regions of plasmid homology. Sites of sequence similarity to mitochondrial plasmids were also detected in other filamentous fungi, but to a lesser degree. The tools developed here will be useful in assessing the contribution plasmids have made to mitochondrial function and in understanding the co-evolution of mitochondrial plasmids and their hosts.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Botina  S. G.  Lysenko  A. M.  Sukhodolets  V. V.  Trenina  M. A. 《Microbiology》2002,71(6):707-711
According to DNA hybridization data, thermophilic streptococci used in Russia as starters in the dairy industry are divided into six different genomovars, with a degree of DNA homology not exceeding 20–50%. The analysis of genomes from these genomovars using SmaI restriction endonuclease and pulsed-field gel electrophoresis revealed wide variability of the genome size. In some strains, the genome size considerably exceeded 2000 kbp. Most of the strains studied contained plasmids about 120 kbp in size.  相似文献   

7.
Simple sequence repeats (SSR) and their flanking regions in the mitochondrial and chloroplast genomes were sequenced in order to reveal DNA sequence variation. This information was used to gain new insights into phylogenetic relationships among species in the genus Oryza. Seven mitochondrial and five chloroplast SSR loci equal to or longer than ten mononucleotide repeats were chosen from known rice mitochondrial and chloroplast genome sequences. A total of 50 accessions of Oryza that represented six different diploid genomes and three different allopolyploid genomes of Oryza species were analyzed. Many base substitutions and deletions/insertions were identified in the SSR loci as well as their flanking regions. Of mononucleotide SSR, G (or C) repeats were more variable than A (or T) repeats. Results obtained by chloroplast and mitochondrial SSR analyses showed similar phylogenetic relationships among species, although chloroplast SSR were more informative because of their higher sequence diversity. The CC genome is suggested to be the maternal parent for the two BBCC genome species (O. punctata and O. minuta) and the CCDD species O. latifolia, based on the high level of sequence conservation between the diploid CC genome species and these allotetraploid species. This is the first report of phylogenetic analysis among plant species, based on mitochondrial and chloroplast SSR and their flanking sequences.  相似文献   

8.
A physical restriction map of the mitochondrial genome from one clone (TCC 854) of the sexually isolated populations (syngens) of the morphologically uniform species Pandorina morum Bory has been constructed using restriction endonucleases Ava I, Bam HI, Bgl II, Eco RI, Kpn I, and Pst I. The 20 kb linear genome can easily be separated from plastid DNA, nuclear satellite rDNA, and main band (nuclear) DNA on a Hoechst/CsCl buoyant density gradient. The Pandorina mitochondrial DNA shows sufficient similarity to the 16 kb mitochondrial genome of Chlamydomonas reinhardtii to cross-hybridize, and also hybridizes with a probe containing maize mitochondrial 18S rRNA genes. Double digests, self-probing, and Bal31 exonuclease experiments suggest that 1.8 to 3.3 kb of sequence is repeated at each end of the genome as an inverted repeat. Mitochondrial genome sizes of other P. morum syngens were found to range from ca. 20 to ca. 38 kb. The mitochondrial genome should be valuable for taxonomic studies; it can be used for comparative organellar studies; and it should be of interest to compare with that of other plant and animal mitochondrial genomes.  相似文献   

9.
Summary The genus Avena consists of at least 23 species composed of three ploidy levels. Cytogenetic analysis has characterised four distinct karyotypes. These are the A, B, C and D genomes. We have isolated a repeated sequence clone that can be used for the detection of the C genome in Avena by filter hybridization techniques. This clone, termed RS-1, is a genomic DNA clone containing at least one highly repeated sequence that is abundant in Avena species containing the C genome. This sequence or a related sequence is also present, but at much reduced levels, in species that do not contain the C genome. Because of its abundance and the characteristic Southern blot pattern, we have termed this clone a C genome specific clone. We have also done similar analysis of the Avena genus using a rDNA clone from wheat. The results of these experiments demonstrate that clearly definable C genome-specific markers can be identified with both probes. These molecular probes can be useful in studying the genomic relationships of Avena and can provide some clues as to the origin of the cultivated Avena species. These results can, therefore, provide breeders with directions for the efficient transfer of desirable traits of wild Avena species into commencal varieties.  相似文献   

10.
With the exception of a few genes, most of the mitochondrial (mt) genome of Pneumocystis carinii has not previously been sequenced. Shotgun sequences generated as a result of the Pneumocystis Genome Project (PGP) were assembled with the gap4 assembly program into a 23-kb contig. Annotation of the mt genome identified 4 open reading frames and 20 tRNAs in addition to 17 other genes: ATP synthase, subunits 6, 8, and 9; cytochrome c oxidase, subunits 1, 2, and 3; NADH dehydrogenase, subunits 1, 2, 3, 4, 4L, 5, and 6; apocytochrome b; RNase P RNA gene; and the mitochondrial large and small ribosomal RNA subunits. A 24-bp unit that repeated from one to five times was identified interior to the ends of the mt genome. Migration of the genome on CHEF gels was consistent with that of linear DNA and digestion with BAL31 showed a concomitant reduction in size of the genome, a characteristic of linear DNA. Together with the identification of terminal repeats similar to those found in other linear fungal mt genomes and the inability to join the ends by PCR, these data provide strong evidence that the mt genome of P. carinii is linear.  相似文献   

11.
Rickettsia are best known as strictly intracellular vector‐borne bacteria that cause mild to severe diseases in humans and other animals. Recent advances in molecular tools and biological experiments have unveiled a wide diversity of Rickettsia spp. that include species with a broad host range and some species that act as endosymbiotic associates. Molecular phylogenies of Rickettsia spp. contain some ambiguities, such as the position of R. canadensis and relationships within the spotted fever group. In the modern era of genomics, with an ever‐increasing number of sequenced genomes, there is enhanced interest in the use of whole‐genome sequences to understand pathogenesis and assess evolutionary relationships among rickettsial species. Rickettsia have small genomes (1.1–1.5 Mb) as a result of reductive evolution. These genomes contain split genes, gene remnants and pseudogenes that, owing to the colinearity of some rickettsial genomes, may represent different steps of the genome degradation process. Genomics reveal extreme genome reduction and massive gene loss in highly vertebrate‐pathogenic Rickettsia compared to less virulent or endosymbiotic species. Information gleaned from rickettsial genomics challenges traditional concepts of pathogenesis that focused primarily on the acquisition of virulence factors. Another intriguing phenomenon about the reduced rickettsial genomes concerns the large fraction of non‐coding DNA and possible functionality of these “non‐coding” sequences, because of the high conservation of these regions. Despite genome streamlining, Rickettsia spp. contain gene families, selfish DNA, repeat palindromic elements and genes encoding eukaryotic‐like motifs. These features participate in sequence and functional diversity and may play a crucial role in adaptation to the host cell and pathogenesis. Genome analyses have identified a large fraction of mobile genetic elements, including plasmids, suggesting the possibility of lateral gene transfer in these intracellular bacteria. Phylogenetic analyses have identified several candidates for horizontal gene acquisition among Rickettsia spp. including tra, pat2, and genes encoding for the type IV secretion system and ATP/ADP translocase that may have been acquired from bacteria living in amoebae. Gene loss, gene duplication, DNA repeats and lateral gene transfer all have shaped rickettsial genome evolution. A comprehensive analysis of the entire genome, including genes and non‐coding DNA, will help to unlock the mysteries of rickettsial evolution and pathogenesis.  相似文献   

12.
Summary Our recent physical mapping of chloroplast DNA (cpDNA) from Chlamydomonas moewusii, a unicellular green alga which is interfertile with Chlamydomonas eugametos, has revealed a two-fold size difference between the inverted repeat sequences of these algae. With a size of 42 kbp, the inverted repeat of C. moewusii is the largest yet identified in any chloroplast genome. Here we have compared the arrangement of conserved sequences within the two algal inverted repeats by hybridizing cloned restriction fragments representing over 90% of these repeats to Southern blots of cpDNA digests from the two algae. We found that the size difference between the two algal inverted repeats is due to the presence of an extra DNA segment of 21 kilobase pairs (kbp) in C. moewusii. Except for this sequence, the C. moewusii inverted repeat is highly homologous to the entire C. eugametos repeat and the arrangement of conserved sequences in the two repeats is identical. Southern hybridizations with specific gene probes revealed that the conserved sequences include the rDNA region and the genes coding for the large subunit of ribulose 1,5 bisphosphate carboxylase-oxygenase (rbcL) and for the 32 kilodalton thylakoid membrane protein (psbA). With respect to the conserved sequences, the extra 21 kbp DNA segment of C. moewusii lies in the region of psbA, most probably slightly downstream from this gene.  相似文献   

13.
In order to investigate possible interactions between parental genomes in the composite genome of Nicotiana tabacum we have analyzed the organization of telomeric (TTTAGGG)n and ribosomal gene (rDNA) repeats in the progenitor genomes Nicotiana sylvestris and Nicotiana tomentosiformis or Nicotiana otophora. Telomeric arrays in the Nicotiana species tested are heterogeneous in length ranging from 20 to 200 kb in N. sylvestris, from 20 to 50 kb in N. tomentosiformis, from 15 to 100kb in N. otophora, and from 40 to 160kb in N. tabacum. The patterns of rDNA repeats (18S, 5.8S, 25S RNA) appeared to be highly homogeneous and speciesspecific; no parental rDNA units corresponding to N. sylvestris, N. tomentosiformis or N. otophora were found in the genome of N. tabacum by Southern hybridization. The results provide evidence for a species-specific evolution of telomeric and ribosomal repeats in the tobacco composite genome.  相似文献   

14.
Organellar DNA was isolated from Codium fragile (Suringar) Hariot (Codiaceae, Codiales, Ulvophyceae) by CsCI-buoyant density centrifugation in the presence of Hoechst dye 33258. Three bands were formed by ultracentrifugation and each fraction of DNA was identified by Southern hybridization. The uppermost fraction was identified as chloroplast DNA, the middle fraction was nuclear DNA and the bottom fraction was mitochondrial DNA. Nuclear rDNA was isolated in the same fraction as mitochondrial DNA. The estimated genome size of mitochondrial DNA by analysis with restriction endonucleases was more than 141.6 kb, which was larger than that of microalgae but smaller than land plants. Restriction endonuclease analysis of the chloroplast DNA showed no difference with that known of C. fragile in New York.  相似文献   

15.
Summary The organization of the mitochondrial genome in somatic hybrids and cybrids regenerated following fusion of protoplasts from cultivated tomato, Lycopersicon esculentum, and the wild species, L. Pennellii, was compared to assess the role of the nuclear genotype on the inheritance of organellar genomes. No organellar-encoded traits were required for the recorvery of either somatic hybrids or cybrids. The organization of the mitochondrial genome was characterized using Southern hybridization of restriction digestions of total DNA isolated from ten cybrids and ten somatic hybrids. A bank of cosmid clones carrying tomato mitochondrial DNA was used as probes, as well as a putative repeated sequence from L. pennellii mitchondrial DNA. The seven cosmids used to characterize the mitochondrial genomes are predicted to encompass at least 60% of the genome. The frequency of nonparental organizations of the mitochondrial genome was highest with a probe derived from a putative repeat element from the L. pennellii mitochondrial DNA. There was no difference in the average frequency of rearranged mitochondrial sequences in somatic hybrids (12%) versus cybrids (10%), although there were individual cybrids with a very high frequency of novel fragments (30%). The frequency of tomato-specific mtDNA sequences was higher in cybrids (25%) versus somatic hybrids (12%), suggesting a nuclear-cytoplasmic interaction on the inheritance of tomato mitochondrial sequences.  相似文献   

16.
Two plant-transformation-competent large-insert binary clone bacterial artificial chromosome (hereafter BIBAC) libraries were previously constructed for soybean cv. Forrest, using BamHI or HindIII. However, they are not well suited for clone-based genomic sequencing due to their larger ratio of vector to insert size (27.6 kbp:125 kbp). Therefore, we developed a larger-insert bacterial artificial chromosome (BAC) library for the genotype in a smaller vector (pECBAC1), using EcoRI. The BAC library contains 38,400 clones; about 99.1% of the clones have inserts; the average insert size is 157 kbp; and the ratio of vector to insert size is much smaller (7.5 kbp:157 kbp). Colony hybridization with probes derived from several chloroplast and mitochondrial genes showed that 0.89% and 0.45% of the clones were derived from the chloroplast and mitochondrial genomes, respectively. Considering these data, the library represents 5.4 haploid genomes of soybean. The library was hybridized with six RFLP marker probes, 5S rDNA and 18S-5.8S-25S rDNA, respectively. Each RFLP marker hybridized to about six clones, and the 5S and 18S-5.8S-25S rDNA probes collectively hybridized to 402 BACs—about 1.05% of the clones in the library. The BAC library complements the existing soybean Forrest BIBAC libraries by using different restriction enzymes and vector systems. Together, the BAC and BIBAC libraries encompass 13.2 haploid genomes, providing the most comprehensive clone resource for a single soybean genotype for public genome research. We show that the BAC library has enhanced the development of the soybean whole-genome physical map and use of three complementary BAC libraries improves genome physical mapping by fingerprint analysis of most of the clones of the library. The rDNA-containing clones were also fingerprinted to evaluate the feasibility of constructing contig maps of the rDNA regions. It was found that physical maps for the rDNA regions could not be readily constructed by fingerprint analysis, using one or two restriction enzymes. Additional data to fingerprints and/or different fingerprinting methods are needed to build contig maps for such highly tandem repetitive regions and thus, the physical map of the entire soybean genome.  相似文献   

17.
Major satellites of species in the genus Pimelia comprise large portions of their genomes and belong to seven major satellite families which all originate from a common ancestral sequence. Here we present the results of comprehensive screening of 26 Pimelia species belonging to three distinct geographic groups (Ibero-Balearic, African and Canary Islands) for the presence of different Pimelia satellite families in their genomes. Dot-blot hybridization experiments suggest that together with one dominant, highly abundant satellite family, other families are also present in genomes of the majority of examined Pimelia species, but as low-copy number repeats. The estimated abundance of these underrepresented repeats is about 4,000 copies per haploid genome. Signals of highly abundant satellite family from P. scabrosa (PSCA) in examined congeneric species, obtained after PCR amplification and Southern hybridization under high stringency conditions, corroborate sequence preservation of low-copy representatives of satellite families. PRINS localized low-copy repeats within the pericentromeric regions of all chromosomes. These results point to the existence of an extensive library of repetitive DNAs that was already present in the genome of the common ancestor of extant Pimelia taxa, and shifts the period of diversification of Pimelia satellites far in the history of this genus.  相似文献   

18.
Mitochondria from two Neurospora intermedia strains (P4O5-Labelle and Fiji N6-6) were found to contain plasmid DNAs in addition to the standard mitochondrial DNA species. The plasmid DNAs consist of monomeric circles (4.1-4.3 kbp and 5.2-5.3 kbp for Labelle and Fiji, respectively) and oligomers in which monomers are organized as head-to-tail repeats. DNA-DNA hybridization experiments showed that the plasmids have no substantial sequence homology to mtDNA, to each other, or to a previously characterized mitochondrial plasmid from N. crassa strain Mauriceville-lc (Collins et al. Cell 24, 443-452, 1981). The intramitochondrial location of the plasmids was established by cell fractionation and nuclease protection experiments. In sexual crosses, the plasmids showed strict maternal inheritance, the same as Neurospora mitochondrial DNA. The plasmids may represent a novel class of mitochondrial genetic elements.  相似文献   

19.
Summary A PstI 7.7 kbp fragment from chloroplast (ct) DNA of spinach shows homology to an EcoRI 8.3 kbp fragment of mitochondrial (mt) DNA and in turn, both are homologous to a number of common regions of nuclear (n) DNA. The common area of homology between the chloroplast and mitochondrial fragments is between a KpnI 1.8 segment internal to the PstI sites in the ctDNA and an EcoRI/BamHI 2.9 kbp fragment at one end of the mitochondrial 8.3 kbp fragment. The KpnI 1.8 kbp ctDNA fragment is within a structural gene for the P700 chlorophyll a apoprotein. Further analysis of this KpnI 1.8 kbp fragment confined the homologous region in mtDNA to a ct 0.8 kbp HpaII fragment. These smaller pieces of the organellar genomes share homologies with nuclear DNA as well as displaying unique hybridization sites. The observations reported here demonstrate that there is a common or closely related sequence in all three genetic compartments of the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号