首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Proinflammatory cytokines secreted by memory CD8+ and CD4+ T cells are thought to play a direct role in the pathogenesis of dengue virus infection by increasing vascular permeability and thereby inducing the pathophysiologic events associated with dengue hemorrhagic fever and dengue shock syndrome. Severe disease is frequently observed in the setting of secondary infection with heterologous dengue virus serotypes, suggesting a role for cross-reactive memory T cells in the immunopathogenesis of severe disease. We used a large panel of well-characterized dengue virus-specific CD8+ T-cell clones isolated from Pacific Islanders previously infected with dengue virus 1 to examine effector memory function, focusing on a novel dominant HLA-B*5502-restricted NS5(329-337) epitope, and assessed T-cell responses to stimulation with variant peptides representing heterologous serotypes. Variant peptides were differentially recognized by dengue virus 1-specific effector CD8+ cytotoxic T lymphocytes (CTL) in a heterogeneous and clone-specific manner, in which cytolytic function and cytokine secretion could be enhanced, diminished, or abrogated compared with cognate peptide stimulation. Dengue virus-specific CTL stimulated with cognate and variant peptides demonstrated a cytokine response hierarchy of gamma IFN (IFN-gamma) > tumor necrosis factor alpha (TNF-alpha) > interleukin-2 (IL-2), and a subset of clones also produced IL-4 and IL-6. Individual clones demonstrated greater avidity for variant peptides representing heterologous serotypes, including serotypes previously encountered by the subject, and IFN-gamma and TNF-alpha secretion was enhanced by stimulation with these heterologous peptides. Altered antiviral T-cell responses in response to stimulation with heterologous dengue virus serotypes have implications for control of virus replication and for disease pathogenesis.  相似文献   

2.
A L Rothman  I Kurane    F A Ennis 《Journal of virology》1996,70(10):6540-6546
The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least five different CD4+ phenotypes and six different CD8+ phenotypes. Individual T-cell clones recognized epitopes on the dengue virus pre-M, E, NSl/NS2A, and NS3 proteins and were restricted by the I-Ad, I-Ed, Ld, and Kd antigens. Both serotype-specific and serotype-cross-reactive clones were isolated in the CD4+ and CD8+ subsets; among CD8+ clones, those that recognized the dengue virus structural proteins were serotype specific whereas those that recognized the nonstructural proteins were serotype cross-reactive. All of the CD8+ and one of five CD4+ clones lysed dengue virus-infected target cells. Using synthetic peptides, we identified an Ld-restricted epitope on the E protein (residues 331 to 339, SPCKIPFEI) and a Kd-restricted epitope on the NS3 protein (residues 296 to 310, ARGYISTRVEM GEAA). These data parallel previous findings of studies using human dengue virus-specific T-cell clones. This experimental mouse system may be useful for studying the role of the virus serotype and HLA haplotype on T-cell responses after primary dengue virus infection.  相似文献   

3.
The interplay of different inflammatory cytokines induced during a dengue (DEN) virus infection plays a role in either protection or increased disease severity. We measured the frequencies and characterized the cytokine responses of DEN virus-specific memory CD4+ T cells in PBMC of six volunteers who received experimental live attenuated monovalent DEN vaccines. IFN-gamma and TNF-alpha responses to inactivated DEN Ags were detected in up to 0.54 and 1.17% of total circulating CD4+ T cells, respectively. Ags from the homologous serotype elicited the highest IFN-gamma response. The ratio of TNF-alpha- to IFN-gamma-producing CD4+ T cells was higher after stimulation with Ags from heterologous DEN serotypes. Peptide-specific CD4+ T cell frequencies of up to 0.089% were detected by direct staining using HLA class II tetramers. IFN-gamma and TNF-alpha responses to individual HLA class II-restricted peptide epitopes were detected in up to 0.05 and 0.27% of CD4+ T cells, respectively. Peptide sequences from the homologous serotype elicited a variety of cytokine response patterns. TNF-alpha- to IFN-gamma-positive CD4+ T cell ratios varied between peptides, but the ratio of the sum of responses was highest against heterologous serotypes. These results demonstrate epitope sequence-specific differences in T cell effector function. These patterns of effector responses may play a role in the immunopathogenesis of DEN hemorrhagic fever.  相似文献   

4.
T-cell responses to dengue viruses may be important in both protective immunity and pathogenesis. This study of 48 Vietnamese adults with secondary dengue virus infections defined the breadth and magnitude of peripheral T-cell responses to 260 overlapping peptide antigens derived from a dengue virus serotype 2 (DV2) isolate. Forty-seven different peptides evoked significant gamma interferon enzyme-linked immunospot (ELISPOT) assay responses in 39 patients; of these, 34 peptides contained potentially novel T-cell epitopes. NS3 and particularly NS3200-324 were important T-cell targets. The breadth and magnitude of ELISPOT responses to DV2 peptides were independent of the infecting dengue virus serotype, suggesting that cross-reactive T cells dominate the acute response during secondary infection. Acute ELISPOT responses were weakly correlated with the extent of hemoconcentration in individual patients but not with the nadir of thrombocytopenia or overall clinical disease grade. NS3556-564 and Env414-422 were identified as novel HLA-A*24 and B*07-restricted CD8+ T-cell epitopes, respectively. Acute T-cell responses to natural variants of Env414-422 and NS3556-564 were largely cross-reactive and peaked during disease convalescence. The results highlight the importance of NS3 and cross-reactive T cells during acute secondary infection but suggest that the overall breadth and magnitude of the T-cell response is not significantly related to clinical disease grade.  相似文献   

5.
The majority of T-cell clones derived from a donor who experienced dengue illness following receipt of a live experimental dengue virus type 3 (DEN3) vaccine cross-reacted with all four serotypes of dengue virus, but some were serotype specific or only partially cross-reactive. The nonstructural protein, NS3, was immuno-dominant in the CD4+ T-cell response of this donor. The epitopes of four NS3-specific T-cell clones were analyzed. JK15 and JK13 recognized only DEN3 NS3, while JK44 recognized DEN1, DEN2, and DEN3 NS3 and JK5 recognized DEN1, DEN3, and West Nile virus NS3. The epitopes recognized by these clones on the DEN3 NS3 protein were localized with recombinant vaccinia viruses expressing truncated regions of the NS3 gene, and then the minimal recognition sequence was mapped with synthetic peptides. Amino acids critical for T-cell recognition were assessed by using peptides with amino acid substitutions. One of the serotype-specific clones (JK13) and the subcomplex- and flavivirus-cross-reactive clone (JK5) recognized the same core epitope, WITDFVGKTVW. The amino acid at the sixth position of this epitope is critical for recognition by both clones. Sequence analysis of the T-cell receptors of these two clones showed that they utilize different VP chains. The core epitopes for the four HLA-DR15-restricted CD4+ CTL clones studied do not contain motifs similar to those proposed by previous studies on endogenous peptides eluted from HLA-DR15 molecules. However, the majority of these dengue virus NS3 core epitopes have a positive amino acid (K or R) at position 8 or 9. Our results indicate that a single epitope can induce T cells with different virus specificities despite the restriction of these T cells by the same HLA-DR15 allele. This finding suggests a previously unappreciated level of complexity for interactions between human T-cell receptors and viral epitopes with very similar sequences on infected cells.  相似文献   

6.
The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.  相似文献   

7.
Lai CY  Tsai WY  Lin SR  Kao CL  Hu HP  King CC  Wu HC  Chang GJ  Wang WK 《Journal of virology》2008,82(13):6631-6643
The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002. Based on the early-convalescent-phase sera tested, the rates of antibody responses to PrM and NS1 proteins were significantly higher in patients with secondary infection than in those with primary infection. A blocking experiment and neutralization assay showed that more than 90% of anti-E antibodies after primary infection were cross-reactive and nonneutralizing against heterologous serotypes and that only a minor proportion were type specific, which may account for the type-specific neutralization activity. Moreover, the E-binding activity in sera of 10 patients with primary infection was greatly reduced by amino acid replacements of three fusion loop residues, tryptophan at position 101, leucine at position 107, and phenylalanine at position 108, but not by replacements of those outside the fusion loop of domain II, suggesting that the predominantly cross-reactive anti-E antibodies recognized epitopes involving the highly conserved residues at the fusion loop of domain II. These findings have implications for our understanding of the pathogenesis of dengue and for the future design of subunit vaccine against DENV as well.  相似文献   

8.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.  相似文献   

9.

Background

Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection.

Methodology/Principal Findings

We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4–7 days after fever onset was more than 50% even after primary infection.

Conclusions/Significance

Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and “innate specificities” seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development.  相似文献   

10.
Dengue virus, a mosquito-borne flavivirus, is a causative agent for dengue infection, which manifests with symptoms ranging from mild fever to fatal dengue shock syndrome. The presence of four serotypes, against which immune cross-protection is short-lived and serotype cross-reactive antibodies that might enhance infection, pose a challenge to further investigate the role of virus and immune response in pathogenesis. We evaluated the viral and immunological factors that correlate with severe dengue disease in a cohort of pediatric dengue patients in New Delhi. Severe dengue disease was observed in both primary and secondary infections. Viral load had no association with disease severity but high viral load correlated with prolonged thrombocytopenia and delayed recovery. Severe dengue cases had low Th1 cytokines and a concurrent increase in the inflammatory mediators such as IL-6, IL-8 and IL-10. A transient increase in CD14+CD16+ intermediate monocytes was observed early in infection. Sorting of monocytes from dengue patient peripheral blood mononuclear cells revealed that it is the CD14+ cells, but not the CD16+ or the T or B cells, that were infected with dengue virus and were major producers of IL-10. Using the Boruta algorithm, reduced interferon-α levels and enhanced aforementioned pro-inflammatory cytokines were identified as some of the distinctive markers of severe dengue. Furthermore, the reduction in the levels of IL-8 and IL-10 were identified as the most significant markers of recovery from severe disease. Our results provide further insights into the immune response of children to primary and secondary dengue infection and help us to understand the complex interplay between the intrinsic factors in dengue pathogenesis.  相似文献   

11.
The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.  相似文献   

12.
By examining adoptively transferred CSFE-labeled lymphocytic choriomeningitis virus (LCMV)-immune donor T cells in Thy-1 congenic hosts inoculated with viruses or with the cytokine inducer poly(I:C), strikingly different responses of bona fide memory T cells were found in response to different stimuli. Poly(I:C) (cytokine) stimulation caused a limited synchronized division of memory CD8 T cells specific to each of five LCMV epitopes, with no increase and sometimes a loss in number, and no change in their epitope hierarchy. Homologous LCMV infection caused more than seven divisions of T cells specific for each epitope, with dramatic increases in number and minor changes in hierarchy. Infections with the heterologous viruses Pichinde and vaccinia (VV) caused more than seven divisions and increases in number of T cells specific to some putatively cross-reactive but not other epitopes and resulted in substantial changes in the hierarchy of the LCMV-specific T cells. Hence, there can be memory T cell division without proliferation (i.e., increase in cell number) in the absence of Ag and division with proliferation in the presence of Ag from homologous or heterologous viruses. Heterologous protective immunity between viruses is not necessarily reciprocal, given that LCMV protects against VV but VV does not protect against LCMV. VV elicited proliferation of LCMV-induced CD8 and CD4 T cells, whereas LCMV did not elicit proliferation of VV-induced T cells. Thus, depending on the pathogen and the sequence of infection, a heterologous agent may selectively stimulate the memory pool in patterns consistent with heterologous immunity.  相似文献   

13.
Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.  相似文献   

14.
The four serotypes of dengue virus (DENV) cause dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Severe disease has been associated with heterotypic secondary DENV infection, mediated by cross-reactive antibodies (Abs) and/or cross-reactive T cells. The role of cross-reactive immunity in mediating enhanced disease versus cross-protection against secondary heterotypic DENV infection is not well defined. A better understanding of the cross-reactive immune response in natural infections is critical for development of safe and effective tetravalent vaccines. We studied the B cell phenotype of circulating B cells in the blood of pediatric patients suspected of dengue during the 2010-2011 dengue season in Managua, Nicaragua (n = 216), which was dominated by the DENV-3 serotype. We found a markedly larger percentage of plasmablast/plasma cells (PB/PCs) circulating in DENV-positive patients as compared to patients with Other Febrile Illnesses (OFIs). The percentage of DENV-specific PB/PCs against DENV-3 represented 10% of the circulating antibody-producing cells (ASCs) in secondary DENV-3 infections. Importantly, the cross-reactive DENV-specific B cell response was higher against a heterotypic serotype, with 46% of circulating PB/PCs specific to DENV-2 and 10% specific to DENV-3 during acute infection. We also observed a higher cross-reactive DENV-specific IgG serum avidity directed against DENV-2 as compared to DENV-3 during acute infection. The neutralization capacity of the serum was broadly cross-reactive against the four DENV serotypes both during the acute phase and at 3 months post-onset of symptoms. Overall, the cross-reactive B cell immune response dominates during secondary DENV infections in humans. These results reflect our recent findings in a mouse model of DENV cross-protection. In addition, this study enabled the development of increased technical and research capacity of Nicaraguan scientists and the implementation of several new immunological assays in the field.  相似文献   

15.
We investigated the specific and cross-reactive CD8 T cell immunity to three natural variants (of different geno/serotype) of the small hepatitis B surface Ag (or S protein). The D(d)-binding variants of the S(201-209) epitope showed different immunogenicity. The loss of the consensus C-terminal (P9) anchor abrogated its immunogenicity. In contrast, a conservative (serine vs asparagine) exchange at P7 primed cross-reactive CD8 T cells that preferentially recognized the priming variant. Cross-reactive CD8 T cell responses to a variant could be primed in mice tolerant to an alternative variant of the D(d)-binding S(201-209) peptide. Loss of the C-terminal (P10) anchor in S(185-194) eliminated its immunogenicity in HLA-A*0201(A2)-transgenic mice but two conservative exchanges (leucine vs valine in P2, and leucine vs isoleucine in P6) in S(208-216) generated cross-reactive CD8 T cell responses with strong preference for the priming variant. Similar cross-reactive recognition of variant envelope epitopes were also found in S(208-216)-specific CD8 T cells from hepatitis B virus (HBV)-infected patients. Distinct CD8 T cell populations cross-reactive to natural variants of class I-restricted HBV epitopes can be primed by vaccination (of mice) or natural infection (of humans), and they may play a role in the "spontaneous remission" or the specific immunotherapy of chronic HBV infection.  相似文献   

16.
Control of hepatitis C virus (HCV) infection could be influenced by the timing and magnitude of CD4+ T cell responses against individual epitopes. We characterized CD4+ T cells targeting seven Pan troglodytes (Patr) class II-restricted epitopes during primary and secondary HCV infections of a chimpanzee. All Patr-DR-restricted HCV epitopes bound multiple human HLA-DR molecules, indicating the potential for overlap in epitopes targeted by both species. Some human MHC class II molecules efficiently stimulated IL-2 production by chimpanzee virus-specific T cell clones. Moreover, one conserved epitope designated NS3(1248) (GYKVLVLNPSV) overlapped a helper epitope that is presented by multiple HLA-DR molecules in humans who spontaneously resolved HCV infection. Resolution of primary infection in the chimpanzee was associated with an initial wave of CD4+ T cells targeting a limited set of dominant epitopes including NS3(1248.) A second wave of low-frequency CD4+ T cells targeting other subdominant epitopes appeared in blood several weeks later after virus replication was mostly contained. During a second infection 7 years later, CD4+ T cells against all epitopes appeared in blood sooner and at higher frequencies but the pattern of dominance was conserved. In summary, primary HCV infection in this individual was characterized by T cell populations targeting two groups of MHC class II-restricted epitopes that differed in frequency and kinetics of appearance in blood. The hierarchial nature of the CD4+ T cell response, if broadly applicable to other HCV-infected chimpanzees and humans, could be a factor governing the outcome of HCV infection.  相似文献   

17.
Regulation of CD8 T cell responses in chronic viral infections is not well understood. In this study, we have compared the CD8 T cell responses to immunodominant and subdominant epitopes during an acute and a chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. The epitope hierarchy of the primary CD8 T cell response was similar in acute and chronic LCMV infections. However, strikingly, the epitope hierarchy of the primary CD8 T cell response was conserved in the T cell memory only in an acute but not in a chronic LCMV infection. Interestingly, in an acute infection, increasing the viral dose caused significant changes in the epitope hierarchy of the LCMV-specific memory CD8 T cell pool, with no effect on the primary CD8 T cell response. Functional and phenotypic analyses revealed that exposure of CD8 T cells to extended periods of antigenic stimulation could lead to long-term defects in cytokine production and alteration in expression of cell surface L-selectin (CD62L). Whereas expression of CD44 was minimally altered, a greater proportion of LCMV-specific memory CD8 T cells were CD62L(low) in mice that have recovered from a chronic LCMV infection, compared with acutely infected mice. Mechanistic studies showed that IFN-gammaR deficiency altered the epitope hierarchy of the pool of LCMV-specific memory CD8 T cells without significantly affecting the immunodominance of the primary CD8 T cell response in an acute infection. Taken together, these findings should further our understanding about the regulation of T cell responses in human chronic viral infections.  相似文献   

18.
We examined the memory cytotoxic T-lymphocytic (CTL) responses of peripheral blood mononuclear cells (PBMC) obtained from patients in Thailand 12 months after natural symptomatic secondary dengue virus infection. In all four patients analyzed, CTLs were detected in bulk culture PBMC against nonstructural dengue virus proteins. Numerous CD4+ and CD8+ CTL lines were generated from the bulk cultures of two patients, KPP94-037 and KPP94-024, which were specific for NS1.2a (NS1 and NS2a collectively) and NS3 proteins, respectively. All CTL lines derived from both patients were cross-reactive with other serotypes of dengue virus. The CD8+ NS1.2a-specific lines from patient KPP94-037 were HLA B57 restricted, and the CD8+ NS3-specific lines from patient KPP94-024 were HLA B7 restricted. The CD4+ CTL lines from patient KPP94-037 were HLA DR7 restricted. A majority of the CD8+ CTLs isolated from patient KPP94-024 were found to recognize amino acids 221 to 232 on NS3. These results demonstrate that in Thai patients after symptomatic secondary natural dengue infections, CTLs are mainly directed against nonstructural proteins and are broadly cross-reactive.  相似文献   

19.
Current vaccines designed to promote humoral immunity to respiratory virus infections also induce potent CD4+ T cell memory. However, little is known about the impact of primed CD4+ T cells on the immune response to heterologous viruses that are serologically distinct, but that share CD4+ T cell epitopes. In addition, the protective capacity of primed CD4+ T cells has not been fully evaluated. In the present study, we addressed these two issues using a murine Sendai virus model. Mice were primed with an HN421-436 peptide that represents the dominant CD4+ T cell epitope on the hemagglutinin-neuraminidase (HN) of Sendai virus. This vaccination strategy induced strong CD4+ T cell memory to the peptide, but did not induce Abs specific for the Sendai virus virion. Subsequent Sendai virus infection of primed mice resulted in 1) a substantially accelerated virus-specific CD4+ T cell response in the pneumonic lung; 2) enhanced primary antiviral Ab-forming cell response in the mediastinal lymph nodes; and 3) accelerated viral clearance. Interestingly, the virus-specific CD8+ T cell response in the lung and the development of long-term memory CD8+ T cells in the spleen were significantly reduced. Taken together, our data demonstrate that primed CD4+ T cells, in the absence of pre-existing Ab, can have a significant effect on the subsequent immune responses to a respiratory virus infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号