首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The interplay of different inflammatory cytokines induced during a dengue (DEN) virus infection plays a role in either protection or increased disease severity. We measured the frequencies and characterized the cytokine responses of DEN virus-specific memory CD4+ T cells in PBMC of six volunteers who received experimental live attenuated monovalent DEN vaccines. IFN-gamma and TNF-alpha responses to inactivated DEN Ags were detected in up to 0.54 and 1.17% of total circulating CD4+ T cells, respectively. Ags from the homologous serotype elicited the highest IFN-gamma response. The ratio of TNF-alpha- to IFN-gamma-producing CD4+ T cells was higher after stimulation with Ags from heterologous DEN serotypes. Peptide-specific CD4+ T cell frequencies of up to 0.089% were detected by direct staining using HLA class II tetramers. IFN-gamma and TNF-alpha responses to individual HLA class II-restricted peptide epitopes were detected in up to 0.05 and 0.27% of CD4+ T cells, respectively. Peptide sequences from the homologous serotype elicited a variety of cytokine response patterns. TNF-alpha- to IFN-gamma-positive CD4+ T cell ratios varied between peptides, but the ratio of the sum of responses was highest against heterologous serotypes. These results demonstrate epitope sequence-specific differences in T cell effector function. These patterns of effector responses may play a role in the immunopathogenesis of DEN hemorrhagic fever.  相似文献   

2.
Reactivation of serotype cross-reactive CD8+ memory T lymphocytes is thought to contribute to the immunopathogenesis of dengue disease during secondary infection by a heterologous serotype. Using cytokine flow cytometry, we have defined four novel HLA-A*02-restricted dengue viral epitopes recognized by up to 1.5% of circulating CD8+ T cells in four donors after primary vaccination. All four donors had the highest cytokine response to the epitope NS4b 2353. We also studied the effect of sequence differences in heterologous dengue serotypes on dengue-reactive CD8+ memory T cell cytokine and proliferative responses. The D3 variant of a different NS4b epitope 2423 and the D2 variant of the NS4a epitope 2148 induced the largest cytokine response, compared with their respective heterologous sequences in all donors regardless of the primary vaccination serotype. Stimulation with variant peptides also altered the relative frequencies of the various subsets of cells that expressed IFN-gamma, TNF-alpha, MIP-1beta, and combinations of these cytokines. These results indicate that the prior infection history of the individual as well as the serotypes of the primary and heterologous secondary viruses influence the nature of the secondary response. These differences in the effector functions of serotype cross-reactive memory T cells induced by heterologous variant epitopes, which are both quantitative and qualitative, may contribute to the clinical outcome of secondary dengue infection.  相似文献   

3.
Dengue hemorrhagic fever, the severe form of dengue virus infection, is believed to be an immunopathological response to a secondary infection with a heterologous serotype of dengue virus. Dengue virus capsid protein-specific CD4(+) cytotoxic T-lymphocyte (CTL) clones were shown to be capable of mediating bystander lysis of non-antigen-presenting target cells. After activation by anti-CD3 or in the presence of unlabeled antigen-presenting target cells, these clones could lyse both Jurkat cells and HepG2 cells as bystander targets. Lysis of HepG2 cells suggests a potential role for CD4(+) CTL in the liver involvement observed during dengue virus infection. Three CD4(+) CTL clones were demonstrated to lyse cognate, antigen-presenting target cells by a mechanism that primarily involves perforin, while bystander lysis occurred through Fas/Fas ligand interactions. In contrast, one clone used a Fas/Fas ligand mechanism to lyse both cognate and bystander targets. Cytokine production by the CTL clones was also examined. In response to stimulation with D2 antigen, CD4(+) T-cell clones produced gamma interferon, tumor necrosis factor alpha (TNF-alpha) and TNF-beta. The data suggest that CD4(+) CTL clones may contribute to the immunopathology observed upon secondary dengue virus infections through direct cytolysis and/or cytokine production.  相似文献   

4.
Infection of mice with a series of heterologous viruses causes a reduction of memory CD8(+) T cells specific to viruses from earlier infections, but the fate of the virus-specific memory CD4(+) T cell pool following multiple virus infections has been unknown. We have previously reported that the virus-specific CD4(+) Th precursor (Thp) frequency remains stable into long-term immunity following lymphocytic choriomeningitis virus (LCMV) infection. In this study, we questioned whether heterologous virus infections or injection with soluble protein CD4 Ags would impact this stable LCMV-specific CD4(+) Thp memory pool. Limiting dilution analyses for IL-2-producing cells and intracellular cytokine staining for IFN-gamma revealed that the LCMV-specific CD4(+) Thp frequency remains relatively stable following multiple heterologous virus infections or protein Ag immunizations, even under conditions that dramatically reduce the LCMV-specific CD8(+) CTL precursor frequency. These data indicate that the CD4(+) and CD8(+) memory T cell pools are regulated independently and that the loss in CD8(+) T cell memory following heterologous virus infections is not a consequence of a parallel loss in the memory CD4(+) T cell population.  相似文献   

5.
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals.  相似文献   

6.
The stages of development of human antigen-specific CD4+ T cells responding to viral infection and their differentiation into long-term memory cells are not well understood. The inoculation of healthy adults with vaccinia virus presents an opportunity to study these events intensively. Between days 11 and 14 postinoculation, there was a peak of proliferating CCR5+CD38+++ CD4+ effector cells which contained the cytotoxic granule marker T-cell intracellular antigen 1 and included gamma interferon (IFN-gamma)-producing vaccinia virus-specific CD4+ T cells. The majority of these initial vaccinia virus-specific CD4+ T cells were CD127+ and produced interleukin-2 (IL-2) but not CTLA-4 in response to restimulation in vitro. Between days 14 and 21, there was a switch from IFN-gamma and IL-2 coexpression to IL-2 production only, coinciding with a resting phenotype and an increased in vitro proliferation response. The early CCR5+CD38+++ vaccinia virus-specific CD4+ T cells were similar to our previous observations of human immunodeficiency virus (HIV)-specific CD4+ T cells in primary HIV type 1 (HIV-1) infection, but the vaccinia virus-specific cells expressed much more CD127 and IL-2 than we previously found in their HIV-specific counterparts. The current study provides important information on the differentiation of IL-2+ vaccinia virus-specific memory cells, allowing further study of antiviral effector CD4+ T cells in healthy adults and their dysfunction in HIV-1 infection.  相似文献   

7.
A L Rothman  I Kurane    F A Ennis 《Journal of virology》1996,70(10):6540-6546
The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least five different CD4+ phenotypes and six different CD8+ phenotypes. Individual T-cell clones recognized epitopes on the dengue virus pre-M, E, NSl/NS2A, and NS3 proteins and were restricted by the I-Ad, I-Ed, Ld, and Kd antigens. Both serotype-specific and serotype-cross-reactive clones were isolated in the CD4+ and CD8+ subsets; among CD8+ clones, those that recognized the dengue virus structural proteins were serotype specific whereas those that recognized the nonstructural proteins were serotype cross-reactive. All of the CD8+ and one of five CD4+ clones lysed dengue virus-infected target cells. Using synthetic peptides, we identified an Ld-restricted epitope on the E protein (residues 331 to 339, SPCKIPFEI) and a Kd-restricted epitope on the NS3 protein (residues 296 to 310, ARGYISTRVEM GEAA). These data parallel previous findings of studies using human dengue virus-specific T-cell clones. This experimental mouse system may be useful for studying the role of the virus serotype and HLA haplotype on T-cell responses after primary dengue virus infection.  相似文献   

8.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.  相似文献   

9.
The immune response to vaccination with bacillus Calmette-Guérin (BCG), the only tuberculosis vaccine available, has not been fully characterized. We used multiparameter flow cytometry to examine specific T cell cytokine production and phenotypic profiles in blood from 10-wk-old infants routinely vaccinated with BCG at birth. Ex vivo stimulation of whole blood with BCG for 12 h induced expression of predominantly IFN-gamma, IL-2, and TNF-alpha in CD4+ T cells in seven distinct cytokine combinations. IL-4 and IL-10 expression was detected in CD4+ T cells at low frequencies and only in cells that did not coexpress type 1 cytokines. Specific CD8+ T cells were less frequent than CD4+ T cells and produced mainly IFN-gamma and/or IL-2 and less TNF-alpha, IL-4, and IL-10. Importantly, many mycobacteria-specific CD4+ and CD8+ T cells did not produce IFN-gamma. The predominant phenotype of BCG-specific type 1 T cells was that of effector cells, i.e., CD45RA-CCR7-CD27+, which may reflect persistence of Mycobacterium bovis BCG in infants until 10 wk of age. Among five phenotypic patterns of CD4+ T cells, central memory cells were more likely to be IL-2+ and effector cells were more likely to be IFN-gamma+. We concluded that neonatal vaccination with BCG induces T cells with a complex pattern of cytokine expression and phenotypes. Measuring IFN-gamma production alone underestimates the magnitude and complexity of the host cytokine response to BCG vaccination and may not be an optimal readout in studies of BCG and novel tuberculosis vaccination.  相似文献   

10.
At birth, almost all human peripheral blood CD8+ T cells express the costimulatory molecule CD28. With increasing age, the proportion of CD8+ T cells that lack CD28 increases. Because the Ag specificity of CD28-CD8+ T cells has not previously been defined, we studied the contribution of CD28-CD8+ T cells to the memory CD8+ CTL response against two human persistent viruses, human CMV (HCMV) and HIV. From PBMC of healthy virus carriers we generated multiple independent CTL clones specific for defined viral peptides and sequenced their TCR beta-chains. We designed clonotypic oligonucleotides complementary to each beta-chain hypervariable sequence and quantified the size of individual immunodominant CTL clones in PBMC. Some individual CTL clones were very large, comprising up to 3.1% of all CD8+ T cells in PBMC, and were generally maintained at a stable level for months. Individual virus-specific CTL clones were consistently more abundant in purified CD28- cells than in the CD8+ population as a whole. Because CD28-CD8+ cells as a population have been reported to proliferate poorly in response to mitogen, we studied the function of these virus-specific CD28- CTL clones by quantifying the frequency of peptide-specific CTL precursors using limiting dilution analysis. CD28-CD8+ T cells contained high frequencies of functional memory CTL precursors specific for peptides of HCMV or HIV, generally higher than in the CD8+ T cell population as a whole. We conclude that in asymptomatic HCMV and HIV infection, human CD28-CD8+ T cells contain high frequencies of functional virus-specific memory CTL clones.  相似文献   

11.
Stimulation with live dengue virus of peripheral blood mononuclear cells from a dengue virus type 4-immune donor generated virus-specific, serotype-cross-reactive, CD8+, class I-restricted cytotoxic T lymphocytes (CTL) capable of lysing dengue virus-infected cells and cells pulsed with dengue virus antigens of all four serotypes. These CTL lysed autologous fibroblasts infected with vaccinia virus-dengue virus recombinant viruses containing the E gene or several nonstructural dengue virus type 4 genes. These results demonstrate that both dengue virus structural and nonstructural proteins are targets for the cytotoxic T-cell-mediated immune response to dengue virus and suggest that serotype-cross-reactive CD8+ CTL may be important mediators of viral clearance and of virus-induced immunopathology during secondary dengue virus infections.  相似文献   

12.
The majority of T-cell clones derived from a donor who experienced dengue illness following receipt of a live experimental dengue virus type 3 (DEN3) vaccine cross-reacted with all four serotypes of dengue virus, but some were serotype specific or only partially cross-reactive. The nonstructural protein, NS3, was immuno-dominant in the CD4+ T-cell response of this donor. The epitopes of four NS3-specific T-cell clones were analyzed. JK15 and JK13 recognized only DEN3 NS3, while JK44 recognized DEN1, DEN2, and DEN3 NS3 and JK5 recognized DEN1, DEN3, and West Nile virus NS3. The epitopes recognized by these clones on the DEN3 NS3 protein were localized with recombinant vaccinia viruses expressing truncated regions of the NS3 gene, and then the minimal recognition sequence was mapped with synthetic peptides. Amino acids critical for T-cell recognition were assessed by using peptides with amino acid substitutions. One of the serotype-specific clones (JK13) and the subcomplex- and flavivirus-cross-reactive clone (JK5) recognized the same core epitope, WITDFVGKTVW. The amino acid at the sixth position of this epitope is critical for recognition by both clones. Sequence analysis of the T-cell receptors of these two clones showed that they utilize different VP chains. The core epitopes for the four HLA-DR15-restricted CD4+ CTL clones studied do not contain motifs similar to those proposed by previous studies on endogenous peptides eluted from HLA-DR15 molecules. However, the majority of these dengue virus NS3 core epitopes have a positive amino acid (K or R) at position 8 or 9. Our results indicate that a single epitope can induce T cells with different virus specificities despite the restriction of these T cells by the same HLA-DR15 allele. This finding suggests a previously unappreciated level of complexity for interactions between human T-cell receptors and viral epitopes with very similar sequences on infected cells.  相似文献   

13.
The intestinal tract is a lymphocyte-rich site that undergoes severe depletion of memory CD4(+) T cells within days of simian immunodeficiency virus or human immunodeficiency virus type 1 (HIV-1) infection. An ensuing influx of virus-specific CD8(+) T cells, which persist throughout the chronic phase of infection, has also been documented in the gastrointestinal tract. However, little is known of the functionality of these effector cells or their relationship to the disease course. In this study, we measured CD8(+) T-cell responses to HIV-1 peptides in paired rectal and blood samples from chronically infected patients. In both blood and rectum, there was an immunodominant CD8(+) T-cell response to HIV Gag compared to Pol and Env (P < 0.01). In contrast, cytomegalovirus pp65 peptides elicited gamma interferon (IFN-gamma) secretion strongly in peripheral blood mononuclear cells (PBMC) but weakly in rectal CD8(+) T cells (P = 0.015). Upon stimulation with HIV peptides, CD8(+) T cells from both sites were capable of mounting complex responses including degranulation (CD107 expression) and IFN-gamma and tumor necrosis factor alpha (TNF-alpha) production. In rectal tissue, CD107 release was frequently coupled with production of IFN-gamma or TNF-alpha. In patients not on antiretroviral therapy, the magnitude of Gag-specific responses, as a percentage of CD8(+) T cells, was greater in the rectal mucosa than in PBMC (P = 0.054); however, the breakdown of responding cells into specific functional categories was similar in both sites. These findings demonstrate that rectal CD8(+) T cells are capable of robust and varied HIV-1-specific responses and therefore likely play an active role in eliminating infected cells during chronic infection.  相似文献   

14.
The gamma interferon (IFN-gamma)-inducible protein 30 (IP-30) signal peptide -11 to -3 (LLDVPTAAV) is a prominent self peptide expressed with the class I human histocompatibility leukocyte antigen A2 (HLA-A2). Stimulation of peripheral blood mononuclear cells (PBMC) from HLA-A2 human immunodeficiency virus type 1 (HIV-1)-infected individuals with an HLA-A2-restricted HIV protease (PR) peptide 76-84 (LVGPTPVNI) activated cytotoxic T lymphocytes (CTL) against the IP-30 signal peptide. Since HIV-1 PR 76-84 stimulated CD8+ T cells from these individuals to secrete IFN-gamma, we tested whether the activation of IP-30-specific CTL in vitro resulted from T-cell cross-reactivity or from up-regulation of IP-30 by IFN-gamma. Neither high levels of exogenous IFN-gamma nor incubation of PBMC with other HIV peptides triggering substantial IFN-gamma release activated IP-30-specific CTL. Although the IP-30 signal peptide did not stimulate IFN-gamma release from freshly isolated PBMC, it activated CTL in vitro against itself and HIV PR 76-84. Peptide-stimulated IFN-gamma release, cold target inhibition, and HLA-A2/immunoglobulin dimer-mediated binding and depletion of effector cells all indicated that in vitro stimulation with HIV PR 76-84 or the IP-30 signal peptide activated a comparable population of cross-reactive effector cells. Neither IP-30 nor HIV PR 76-84 activated CTL against themselves following in vitro stimulation of PBMC from non-HIV-infected HLA-A2 individuals. Peptide titrations indicated higher-avidity T-cell interactions with HIV PR 76-84 than with the IP-30 signal peptide. These data indicate that HIV PR 76-84 is a heteroclitic variant of the IP-30 signal peptide -11 to -3, which has implications for immune memory and autoimmunity.  相似文献   

15.
The evolutionary preservation of reactive oxygen species in innate immunity underscores the important roles these constituents play in immune cell activity and as signaling intermediates. In an effort to exploit these pathways to achieve control of aberrant immune activation we demonstrate that modulation of redox status suppresses cell proliferation and production of IL-2, IFN-gamma, TNF-alpha, and IL-17 in two robust CD8 T-cell-dependent in vitro mouse models: (1) response to alloantigen in an mixed leukocyte reaction and (2) CD8 T cell receptor transgenic OT-1 response to cognate peptide (SIINFEKL). To correlate these findings with cytotoxic lymphocyte (CTL) function we performed cytotoxicity assays and found that redox modulation diminishes the ability of alloantigen-specific and antigen-specific OT-1 CTLs to kill their corresponding antigen-expressing target cells. To further examine the mechanisms of redox-mediated repression of CTL target cell lysis, we analyzed the expression of the effector molecules IFN-gamma, perforin, and granzyme B and the degranulation marker CD107a (LAMP-1). In both models, redox modulation reduced the expression of these effector components by at least fivefold. These results demonstrate that redox modulation quells the CD8 T cell response to alloantigen and the T cell receptor transgenic CD8 T cell response to its cognate antigen by inhibiting proliferation, proinflammatory cytokine synthesis, and CTL effector mechanisms.  相似文献   

16.
Accumulating evidence suggests that HIV-specific CD8(+) CTL are dysfunctional in HIV-infected individuals with progressive clinical disease. In the present studies, cytokine production by virus-specific CTL was assessed in the rhesus monkey model for AIDS to determine its contribution to the functional impairment of CTL. CTL from monkeys infected with nonpathogenic isolates of simian and simian-human immunodeficiency virus expressed high levels of IFN-gamma, TNF-alpha, and IL-2 after in vitro exposure to a nonspecific mitogen or the optimal peptide representing a dominant virus-specific CTL epitope. However, similarly performed studies assessing these capabilities in CTL from monkeys infected with pathogenic immunodeficiency virus isolates demonstrated a significant dysfunction in the ability of the CTL to produce IL-2 and TNF-alpha. Importantly, CTL from vaccinated monkeys that effectively controlled the replication of a highly pathogenic simian-human immunodeficiency virus isolate following challenge demonstrated a preserved capacity to produce these cytokines. These experiments suggest that defects in cytokine production may contribute to CTL dysfunction in chronic HIV or SIV infection. Moreover, an AIDS vaccine that confers protection against clinical disease evolution in this experimental model also preserves the functional capacity of these CTL to produce both IL-2 and TNF-alpha.  相似文献   

17.
Although FoxP3 has been shown to be the most specific marker for regulatory CD4(+) T cells, its significance in the CD8(+) T cell population is not well understood. In this study, we show that the in vitro stimulation of human PBMC with hepatitis C virus or Flu virus-specific peptides gives rise to two distinct Ag-specific T cell populations: FoxP3(-) and FoxP3(+)CD8(+) T cells. The FoxP3(+) virus-specific CD8(+) T cells share phenotypical markers of regulatory T cells, such as CTLA-4 and glucocorticoid-induced TNFR family-related gene, and do produce moderate amounts of IFN-gamma but not IL-2 or IL-10. IL-2 and IL-10 are critical cytokines, however, because the expansion of virus-specific FoxP3(+)CD8(+) T cells is blocked by IL-2- or IL-10-neutralizing mAbs. The virus-specific FoxP3(+)CD8(+) T cells have a reduced proliferative capacity, indicating anergy, and display a cell-cell contact-dependent suppressive activity. Taken together, our results indicate that stimulation with a defined viral Ag leads to the expansion of two different cell populations: FoxP3(-) memory/effector as well as FoxP3(+) regulatory virus-specific CD8(+) T cells.  相似文献   

18.
Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone recognized dengue virus types 1, 2, and 3. Four dengue virus serotype-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4. One flavivirus-cross-reactive clone recognized dengue virus types 1, 2, 3, and 4 and West Nile virus (WNV), but did not recognize yellow fever virus (YFV), whereas three flavivirus-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4, WNV, and YFV. HLA restriction in the lysis by these T-cell clones was also heterogeneous. HLA-DP, HLA-DQ, and HLA-DR were used as restriction elements by various T-cell clones. We also examined the recognition of viral nonstructural protein NS3, purified from cells infected with dengue virus type 3 or WNV, by these T-cell clones. One serotype-specific clone, two dengue virus subcomplex-specific clones, and three dengue virus serotype-cross-reactive clones recognized NS3 of dengue virus type 3. One flavivirus-cross-reactive clone recognized NS3 of dengue virus type 3 and WNV. These results indicate that heterogeneous dengue virus-specific CD4+ cytotoxic T cells are stimulated in response to infection with a dengue virus and that a nonstructural protein, NS3, contains multiple dominant T-cell epitopes.  相似文献   

19.
Analysis of C57BL/6 mice acutely infected with lymphocytic choriomeningitis virus (LCMV) by using intracellular cytokine staining revealed a high frequency (2 to 10%) of CD4(+) T cells secreting the Th1-associated cytokines interleukin-2 (IL-2), gamma interferon (IFN-gamma), and tumor necrosis factor alpha, with no concomitant increase in the frequency of CD4(+) T cells secreting the Th2-associated cytokines IL-4, IL-5, and IL-10 following stimulation with viral peptides. In LCMV-infected C57BL/6 CD8(-/-) mice, more than 20% of the CD4(+) T cells secreted IFN-gamma after viral peptide stimulation, whereas less than 1% of the CD4(+) T cells secreted IL-4 under these same conditions. Mice persistently infected with a high dose of LCMV clone 13 also generated a virtually exclusive Th1 response. Thus, LCMV induces a much more profound virus-specific CD4(+) T-cell response than previously recognized, and it is dramatically skewed to a Th1 phenotype.  相似文献   

20.
Screening with the flow cytometric IFN-gamma assay has led to the identification of a new immunogenic peptide (SSYRRPVGI) [corrected] from the influenza PB1 polymerase (PB1(703--711)) and a mimotope (ISPLMVAYM) from the PB2 polymerase (PB2(198--206)). CD8(+) T cells specific for K(b)PB1(703) make both IFN-gamma and TNF-alpha following stimulation with both peptides. The CD8(+) K(b)PB1(703)(+) population kills PB2(198)-pulsed targets, but cell lines stimulated with PB2(198) neither bind the K(b)PB1(703) tetramer nor become CTL. This CD8(+)K(b)PB1(703)(+) population is prominent in the primary response to an H3N2 virus, although it is much less obvious following secondary challenge of H1N1-primed mice. Even so, we can now account for >40% of the CD8(+) T cells in a primary influenza pneumonia and >85% of those present after H3N2 --> H1N1 challenge. Profiles of IFN-gamma and TNF-alpha staining following in vitro stimulation have been traced for the four most prominent influenza peptides through primary and secondary responses into long-term memory. The D(b)NP(366) epitope that is immunodominant after the H3N2 --> H1N1 challenge shows the lowest frequencies of CD8(+) IFN-gamma(+)TNF-alpha(+) cells for >6 wk, and the intensity of IFN-gamma staining is also low for the first 3 wk. By 11 wk, however, the IFN-gamma/TNF-alpha profiles look to be similar for all four epitopes. At least by the criterion of cytokine production, there is considerable epitope-related functional diversity in the influenza virus-specific CD8(+) T cell response. The results for the K(b)PB1(703) epitope and the PB2(198) mimotope also provide a cautionary tale for those using the cytokine staining approach to identity antigenic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号