首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A protein isolated from goat testis cytosol is found to inhibit Na+,K+-ATPase from rat brain microsomes. The inhibitor has been purified by ammonium sulphate precipitation followed by hydroxyapatite column chromatography. The purified fraction appears as a single polypeptide band on 10% SDS-PAGE of approximate molecular mass of 70 kDa. The concentration at which 50% inhibition (I50) occurs is in the nanomolar range. The inhibitor seems to bind Na+,K+-ATPase reversibly at ATP binding site in a competitive manner with ATP, but away from ouabain binding site. It does not affect p-nitrophenyl-phosphatase activity. The inhibitor is found to inhibit the phosphorylation step of the Na+,K+-ATPase. The enhancement of tryptophan fluorescence and changes in CD pattern suggest conformational changes of Na+,K+-ATPase on binding to the inhibitor. Amino acid sequence of the trypsinised fragments show some homology with aldehyde reductase.  相似文献   

2.
Summary Membrane fragments containing the H+K-ATPase from parietal cells have been adsorbed to a planar lipid membrane. The transport activity of the enzyme was determined by measuring electrical currents via the capacitive coupling between the membrane sheets and the planar lipid film. To initiate the pump currents by the ATPase a light-driven concentration jump of ATP from caged ATP was applied as demonstrated previously for Na+K+-ATPase (Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985.EMBO J. 4:3079–3085). Since H+K+-ATPase is an electroneutrally working enzyme no stationary pump currents were observed in the presence of K+. By separation of the H+ and K+ transport steps of the reaction cycle, however, the electrogenic step of the phosphorylation could be measured. This was achieved in the absence of K+ or at low concentrations of K+. The observed transient current is ATP dependent which can be assigned to the proton movement during the phosphorylation. From this it was conclueded that the K+ transport during dephosphorylation is electrogenic, too, in contrast to the Na+K+-ATPase where the K+ step is electroneutral. The transient current was measured at different ionic conditions and could be blocked by vanadate and by the H+K+-ATPase specific inhibitor omeprazole. An alternative mechanism for activation of this inhibitor is discussed.  相似文献   

3.
Summary

Among the many functions of follicle cells in the insect ovary is the regulation of the entrance into the follicle of the vitellogenin circulating in the hemolymph. The vitellogenin enters the follicle via large spaces which appear between the follicle cells. The appearance of these spaces (patency) is a result of a reduction in volume of the follicle cells caused by the action of juvenile hormone which activates a juvenile-hormone-sensitive Na+K+ ATPase via a pathway involving protein kinase C. A putative juvenile hormone receptor protein has been identified in membranes from follicle cells. An antigonadotropin, a small neuropeptide, antagonizes the action of juvenile hormone on the follicle cells.  相似文献   

4.
Hickey KD  Buhr MM 《Theriogenology》2012,77(7):1369-1380
Existing as a ubiquitous transmembrane protein, Na+K+-ATPase affects sperm fertility and capacitation through ion transport and a recently identified signaling function. Functional Na+K+-ATPase is a dimer of α and β subunits, each with isoforms (four and three, respectively). Since specific isoform pairings and locations may influence or indicate function, the objective of this study was to identify and localize subunits of Na+K+-ATPase in fresh bull sperm by immunoblotting and immunocytochemistry using antibodies against α1 and 3, and all β isoforms. Relative quantity of Na+K+-ATPase in head plasma membranes (HPM's) from sperm of different bulls was determined by densitometry of immunoblot bands, and compared to bovine kidney. Sperm and kidney specifically bound all antibodies at kDa equivalent to commercial controls, and to additional lower kDa bands in HPM. Immunofluorescence of intact sperm confirmed that all isoforms were present in the head region of sperm and that α3 was also uniformly distributed post-equatorially. Permeabilization exposing internal membranes typically resulted in an increase in fluorescence, indicating that some antibody binding sites were present on the inner surface of the HPM or the acrosomal membrane. Deglycosylation of β1 reduced the kDa of bands in sperm, rat brain and kidney, with the kDa of the deglycosylated bands differing among tissues. Two-dimensional blots of β1 revealed three distinct spots. Based on the unique quantity, location and structure Na+K+-ATPase subunits in sperm, we inferred that this protein has unique functions in sperm.  相似文献   

5.
In the present study some properties of an inhibitory extract of synaptosomal membrane Na+,K+-ATPase were investigated. This extract (peak II) was prepared by gel filtration in Sephadex G-50 of a soluble fraction of the rat cerebral cortex. Ultrafiltration of peak II through Amicon membranes indicated that the inhibitor has a low MW (<1000). The inhibitory activity was not modified by heating in neutral pH at 95°C for 20 min but it was destroyed by charring in acid pH at 200°C for 120 min. The inhibitory activity decreased by incubation of peak II with carboxypeptidase A. These findings suggest that the factor responsible for the inhibition of Na+,K+-ATPase activity is probably a polypeptide. On the other hand, the inhibition was reverted by the chelators EDTA and EGTA, indicating the participation of an ionic compound as well. The increase of Mg2+ concentration during the enzyme assay did not increase the inhibition, indicating that the ion involved might not be vanadate. It is suggested that both a polypeptide and an ionic compound coparticipate in the inhibitory effect of peak II on Na+,K+-ATPase activity.  相似文献   

6.
Summary The (Na++K+)-ATPase of garfish olfactory nerve axon plasma membrane was purified about sixfold by treatment of the membrane with sodium dodecyl sulfate followed by sucrose density gradient centrifugation. The estimated molecular weights of the two major polypeptide components of the enzyme preparation on sodium dodecyl sulfate gels were 110,000 and 42,000 daltons, which were different from those of the corresponding peptides of rabbit kidney (Na++K+)-ATPase. No carbohydrate was detected in the 42,000-dalton component either by the periodic acid-Schiff reagent or by the more sensitive concanavalin A-peroxidase staining procedure. The molecular properties of the garfish (Na++K+)-ATPase, such as theK m for ATP, pH optimum, energies of activation, Na and K ion dependence and vanadium inhibition, were, however, similar to those of the kidney enzyme.The partially purified garfish (Na++K+)-ATPase was reconstituted into phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted enzyme was found to catalyze a time and ATP dependent22Na+ transport. The ratio of22Na+ pumped to ATP hydrolyzed was about 1; under the same reconstitution and assay conditions, eel electroplax (Na++K+)-ATPase, however, gave a22Na+ pumped to ATP hydrolyzed ratio of nearly 3.  相似文献   

7.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

8.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

9.
The naturally occurring toxin rottlerin has been used by other laboratories as a specific inhibitor of protein kinase C-delta (PKC-δ) to obtain evidence that the activity-dependent distribution of glutamate transporter GLAST is regulated by PKC-δ mediated phosphorylation. Using immunofluorescence labelling for GLAST and deconvolution microscopy we have observed that d-aspartate-induced redistribution of GLAST towards the plasma membranes of cultured astrocytes was abolished by rottlerin. In brain tissue in vitro, rottlerin reduced apparent activity of (Na+, K+)-dependent ATPase (Na+, K+-ATPase) and increased oxygen consumption in accordance with its known activity as an uncoupler of oxidative phosphorylation (“metabolic poison”). Rottlerin also inhibited Na+, K+-ATPase in cultured astrocytes. As the glutamate transport critically depends on energy metabolism and on the activity of Na+, K+-ATPase in particular, we suggest that the metabolic toxicity of rottlerin and/or the decreased activity of the Na+, K+-ATPase could explain both the glutamate transport inhibition and altered GLAST distribution caused by rottlerin even without any involvement of PKC-δ-catalysed phosphorylation in the process.  相似文献   

10.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

11.
The effect of lipid peroxidation on the affinity of specific active sites of Na+, K+-ATPase for ATP (substrate), K+ and Na+ (activators), and strophanthidin (a specific inhibitor) was investigated. Brain cell membranes were peroxidized in vitro in the presence of 100M ascorbate and 25M FeCl2 at 37°C for time intervals from 0–20 min. The level of thiobarbituric acid reactive substances and the activity of Na+, K+-ATPase were determined. The enzyme activity decreased by 80% in the first min. from 42.0±3.8 to 8.8±0.9 mol Pi/mg protein/hr and remained unchanged thereafter. Lipid peroxidation products increased to a steady state level from 0.2±0.1 to 16.5 ±1.5 nmol malonaldehyde/mg protein by 3 min. In peroxidized membranes, the affinity for ATP and strophanthidin was increased (two and seven fold, respectively), whereas affinity for K+ and Na+ was decreased (to one tenth and one seventh of control values, respectively). Changes in the affinity of active sites will affect the phosphorylation and dephosphorylation mechanisms of Na+, K+-ATPase reaction. The increased affinity for ATP favors the phosphorylation of the enzyme at low ATP concentrations whereas, the decreased affinity for K+ will not favor the dephosphorylation of the enzyme-P complex resulting in unavailability of energy for transmembrane transport processes. The results demonstrate that lipid peroxidation alters Na+, K+-ATPase function by modification at specific active sites in a selective manner, rather than through a non-specific destructive process.  相似文献   

12.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

13.
Recently, our group described an AT1-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na+-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na+-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na+-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na+-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

14.
The basolateral membranes of kidney proximal tubule cells have (Na++K+)-ATPase and Na+-ATPase activities, involved in Na+ reabsorption. We showed that ceramide (Cer) modulates protein kinase A (PKA) and protein kinase C (PKC), which are involved in regulating ion transporters. Here we show that ceramide, promotes 60% inhibition of Na+-ATPase activity (I50 ≈ 100 nM). This effect was completely reversed by inhibiting PKA but did not involve the classic PKC signaling pathway. In these membranes we found the Cer-activated atypical PKC zeta (PKCζ) isoform. When PKCζ is inhibited, Cer ceases to inhibit the Na+-ATPase, allowing the cAMP/PKA signaling pathway to recover its stimulatory effect on the pump. There were no effects on the (Na++K+)-ATPase. These results reveal Cer as a potent physiological modulator of the Na+-ATPase, participating in a regulatory network in kidney cells and counteracting the stimulatory effect of PKA via PKCζ.  相似文献   

15.
Zhang Y  Wang L  Liu Y  Zhang Q  Wei Q  Zhang W 《Planta》2006,224(3):545-555
Nitric oxide (NO), an endogenous signaling molecule in animals and plants, mediates responses to abiotic and biotic stresses. Our previous work demonstrated that 100 μM sodium nitroprusside (SNP, an NO donor) treatment of maize seedlings increased K+ accumulation in roots, leaves and sheathes, while decreasing Na+ accumulation (Zhang et al. in J Plant Physiol Mol Biol 30:455–459, 2004b). Here we investigate how NO regulates Na+, K+ ion homeostasis in maize. Pre-treatment with 100 μM SNP for 2 days improved later growth of maize plants under 100 mM NaCl stress, as indicated by increased dry matter accumulation, increased chlorophyll content, and decreased membrane leakage from leaf cells. An NO scavenger, methylene blue (MB-1), blocked the effect of SNP. These results indicated that SNP-derived NO enhanced maize tolerance to salt stress. Further analysis showed that NaCl induced a transient increase in the NO level in maize leaves. Both NO and NaCl treatment stimulated vacuolar H+-ATPase and H+-PPase activities, resulting in increased H+-translocation and Na+/H+ exchange. NaCl-induced H+-ATPase and H+-PPase activities were diminished by MB-1. 1-Butanol, an inhibitor of phosphatidic acid (PA) production by phospholipase D (PLD), reduced NaCl- and NO-induced H+-ATPase activation. In contrast, applied PA stimulated H+-ATPase activity. These results suggest that NO acts as a signal molecule in the NaCl response by increasing the activities of vacuolar H+-ATPase and H+-PPase, which provide the driving force for Na+/H+ exchange. PLD and PA play an important role in this process.  相似文献   

16.
We have previously reported the isolation by gel filtration and anionic exchange HPLC of two brain Na+, K+-ATPase inhibitors, II-A and II-E, and kinetics of enzyme interaction with the latter. In the present study we evaluated the kinetics of synaptosomal membrane Na+, K+-ATPase with II-A and found that inhibitory activity was independent of ATP (2–8 mM), Na+ (3.1–100 mM), or K+ (2.5–40 mM) concentration. Hanes-Woolf plots showed that II-A decreases Vmax in all cases; KM value decreased for ATP but remained unaltered for Na+ and K+, indicating respectively uncompetitive and noncompetitive interaction. However, II-A became a stimulator at 0.3 mM K+ concentration. It is postulated that brain endogenous factor II-A may behave as a sodium pump modulator at the synaptic region, an action which depends on K+ concentration.  相似文献   

17.
The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory, that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories. Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and use of the fraction. The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II. In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance.  相似文献   

18.
We have already described the separation of two brain soluble fractions by Sephadex G-50, one of which stimulates (peak I) and the other inhibits (peak II) Na+, K+-ATPase and K+-p-nitrophenylphosphatase (K+-p-NPPase) activities. Here we examine the features of synaptosomal membrane p-NPPase activity in the presence and absence of brain peak I. It was observed that stimulation of Mg2+, K+-p-NPPase activity by peak I was concentration dependent, The ability of peak I to stimulate p-NPPase activity was lost by heat treatment followed by brief centrifugation. Pure serum albumin also stimulated enzyme activity. K+-p-NPPase stimulation by peak I proved dependent on K+ concentration but independent of Mg2+ and substrate p-nitrophenylphosphate concentrations. Since our determinations were performed in a non-phosphorylating condition reflecting the Na+, K+-ATPase Na+ site, it is suggested that peak I may stimulate the Na+-dependent enzyme phosphorylation known to take place from the internal cytoplasmic side.  相似文献   

19.
The myelin-deficient Shiverer (Shi/Shi) mutant mouse may be a useful model in assessing the dependence of brain (Na++K+)-ATPase concentration and composition on myelin membrane formation. Brain microsomal membranes from age-matched control (+/+) and Shiverer (Shi/Shi) mice were fractionated by differential centrifugation and sucrose gradient sedimentation. No reduction in (Na++K+)-ATPase specific activity was measured in whole homogenates, high-and low-speed fractions or gradient fractions from brains of Shi/Shi mice as compared to those of +/+ mice. In addition, sodium dodecylsulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting with antisera specific for mouse brain (Na++K+)-ATPase revealed no significant difference in catalytic subunit composition between fractions of +/+ and Shi/Shi brains. The similar results obtained for both +/+ and myelin-deficient Shi/Shi mice suggest that myelin contributes little to total brain (Na++K+)-ATPase.  相似文献   

20.
The dopamine receptor agonist, bromocriptine, in a dose of 10 mg/kg i.p. for 14 days, in rats caused a significant increase in liver Na+/K+-ATPase activity, whereas sulpiride, a dopamine receptor antagonist, in a dose of 10 mg/kg, i.p. for 14 days, in rats, caused a significant decrease in liver Na+/K+-ATPase activity. Injection of bromocriptine and sulpiride simultaneously in a group of rats, under the same conditions and using the same doses caused a complete block of both stimulatory activity of bromocriptine and inhibitory activity of sulpiride on liver Na+/K+-ATPase activity. It is suggested that Na+/K+-ATPase may have a role in the action of dopaminergic-D2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号