首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chromosomal location of the gene for the alpha polypeptide of the pyruvate dehydrogenase (alpha E1), a major component of the pyruvate dehydrogenase complex, was determined by using a cloned cDNA for alpha E1. This 1-kb cDNA was isolated from a human liver lambda gt11 expression library with specific antibodies and included the coding (from amino acid 144 to the carboxy terminus) and the 3' untranslated regions. Southern blot analysis of the DNA from a panel of rodent-human hybrid cells showed that the absence or the presence of the major EcoRI fragment that hybridized with this cDNA probe was concordant with the presence of the Xq24-p22 region of the human X chromosome. The result of in situ hybridization with human metaphase chromosomes further mapped the alpha E1 gene to the Xp arm.  相似文献   

2.
We report the isolation of a 1.5 kb cDNA clone for the beta subunit of human pyruvate dehydrogenase (E1) from a human liver lambda gt11 cDNA library using anti-E1 serum. We generated a peptide sequence of 24 amino acids starting from the N-terminus of bovine heart mature E1 beta. The identity of the E1 beta cDNA clone was confirmed by the similarity between the amino acid sequence deduced from the cDNA nucleotide sequence and the known amino acid sequence of bovine heart E1 beta. In Northern analysis of total RNA extracted from human heart, the E1 beta cDNA clone hybridized to a major 1.6 kb and a minor 5.2 kb RNA species.  相似文献   

3.
Dihydrolipoamide acetyltransferase (E2) forms the structural core of pyruvate dehydrogenase complex. A cDNA clone (lambda E2-1) for mammalian E2 was identified from a human liver lambda gt11 library using anti-E2 serum. Affinity-selected antibodies using the fusion protein from lambda E2-1 immuno-reacted specifically with E2 of purified pyruvate dehydrogenase complex on immuno-blot analysis. The cDNA insert was approximately 2.3 kb in length with an internal EcoR1 site generating 1.4 and 0.9 kb fragments. A synthetic 17-mer oligodeoxynucleotide mixture based on the amino acid sequence surrounding the lipoic acid-containing lysine residue in bovine kidney E2 hybridized with the 2.3 kb cDNA insert and the 1.4 kb fragment.  相似文献   

4.
Western blot (immunoblot) analysis of Bacillus subtilis cell extracts detected two proteins that cross-reacted with monospecific polyclonal antibody raised against Escherichia coli initiation factor 2 alpha (IF2 alpha). Subsequent Southern blot analysis of B. subtilis genomic DNA identified a 1.3-kilobase (kb) HindIII fragment which cross-hybridized with both E. coli and Bacillus stearothermophilus IF2 gene probes. This DNA was cloned from a size-selected B. subtilis plasmid library. The cloned HindIII fragment, which was shown by DNA sequence analysis to encode the N-terminal half of the B. subtilis IF2 protein and 0.2 kb of upstream flanking sequence, was utilized as a homologous probe to clone an overlapping 2.76-kb ClaI chromosomal fragment containing the entire IF2 structural gene. The HindIII fragment was also used as a probe to obtain overlapping clones from a lambda gt11 library which contained additional upstream and downstream flanking sequences. Sequence comparisons between the B. subtilis IF2 gene and the other bacterial homologs from E. coli, B. stearothermophilus, and Streptococcus faecium displayed extensive nucleic acid and protein sequence homologies. The B. subtilis infB gene encodes two proteins, IF2 alpha (78.6 kilodaltons) and IF2 beta (68.2 kilodaltons); both were expressed in B. subtilis and E. coli. These two proteins cross-reacted with antiserum to E. coli IF2 alpha and were able to complement in vivo an E. coli infB gene disruption. Four-factor recombination analysis positioned the infB gene at 145 degrees on the B. subtilis chromosome, between the polC and spcB loci. This location is distinct from those of the other major ribosomal protein and rRNA gene clusters of B. subtilis.  相似文献   

5.
The genes encoding proteins responsible for activity of the E1 component of branched-chain-oxoacid dehydrogenase of Pseudomonas putida have been subcloned and the nucleotide sequence of this region determined. Open reading frames encoding E1 alpha (bkdA1, 1233 bp) and E1 beta (bkdA2, 1020 bp) were identified with the aid of the N-terminal sequence of the purified subunits. The Mr of E1 alpha was 45,158 and of E1 beta was 37,007, both calculated without N-terminal methionine. The deduced amino acid sequences of E1 alpha and E1 beta had no similarity to the published sequences of the E1 subunits of pyruvate and 2-oxoglutarate dehydrogenases of Escherichia coli. However, there was substantial similarity between the E1 alpha subunits of Pseudomonas and rat liver branched-chain-oxoacid dehydrogenases. In particular, the region of the E1 alpha subunit of the mammalian branched-chain-oxoacid dehydrogenase which is phosphorylated, was found to be highly conserved in the Pseudomonas E1 alpha subunit. There was also considerable similarity between the E1 beta subunits of Pseudomonas branched-chain-oxoacid dehydrogenase and human pyruvate dehydrogenase.  相似文献   

6.
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor.  相似文献   

7.
We have isolated a chimpanzee processed pseudogene for subunit IV of cytochrome c oxidase (COX; EC 1.9.3.1) by screening a chimpanzee genomic library in lambda Charon 32 with a bovine liver cDNA encoding COX subunit IV (COX IV), and localized it to a 1.9-kb HindIII fragment. Southern-blot analysis of genomic DNA from five primates showed that DNAs from human, gorilla, and chimpanzee each contained the 1.9-kb pseudogene fragment, whereas orangutan and pigtail macaque monkey DNA did not. This result clearly indicates that the pseudogene arose before the divergence of the chimpanzee and gorilla from the primate lineage. By screening Chinese hamster x human hybrid panels with the human COX4 cDNA, we have mapped COX4 genes to two human chromosomes, 14 and 16. The 1.9-kb HindIII fragment containing the pseudogene, COX4P1, can be assigned to chromosome 14, and by means of rearranged chromosomes in somatic cell hybrids, to 14q21-qter. Similarly, the functional gene, COX4, has been mapped to 16q22-qter.  相似文献   

8.
A 413-base cDNA insert encoding a portion of the alpha subunit of pyruvate dehydrogenase (E1 alpha; EC 1.2.4.1) from Saccharomyces cerevisiae was isolated from a lambda gt11 cDNA library by immunoscreening and by hybridization with an oligonucleotide probe which corresponded to the amino acid sequence around the phosphorylation site of E1 alpha. This cDNA was subcloned, sequenced and used as a probe to isolate two additional cDNA inserts which were subcloned and sequenced. These overlapping clones comprised the carboxyl-terminal part of E1 alpha. To identify the missing nucleotide sequence, the polymerase chain reaction was used to amplify yeast genomic DNA with synthetic oligonucleotide primers based on the amino-terminal sequence of E1 alpha and the 5' end of one of the cDNA clones. Three DNA fragments were isolated and sequenced. The composite nucleotide sequence has an open reading frame of 1260 nucleotides encoding a putative presequence of 33 amino acids and a mature protein of 387 amino acids (Mr = 42,703). Hybridization analysis showed that the size of the mRNA is about 1.4 kilobases.  相似文献   

9.
The highly purified yeast mRNA capping enzyme is composed of two separate chains of 52 (alpha) and 80 kDa (beta), responsible for the activities of mRNA guanylyltransferase and RNA 5'-triphosphatase, respectively (Itoh, N., Yamada, H., Kaziro, Y., and Mizumoto, K. (1987) J. Biol. Chem. 262, 1989-1995). The gene encoding the mRNA guanylyltransferase subunit (alpha subunit), CEG1, has been isolated by immunological screening of a yeast genomic expression library in lambda gt11 with polyclonal antibodies directed against purified yeast capping enzyme. The identity of CEG1 was confirmed by epitope selection and by expressing the gene in Escherichia coli to give a catalytically active mRNA guanylyltransferase. The gene is present in one copy per haploid genome, and encodes a polypeptide of 459 amino acid residues. From its primary structure as well as its mRNA size, it was concluded that the alpha and the beta subunits of yeast mRNA capping enzyme are encoded by two separate genes, not as a fused protein. CEG1 is located on the chromosome VII by a pulse-field gel electrophoresis. Gene disruption experiment indicated that CEG1 is essential for the growth of yeast. We have also found another open reading frame (ORF2) which lies in close proximity to CEG1 in our clones and encodes a 450 amino acid-polypeptide of yet unknown function.  相似文献   

10.
Two distinct types of cDNA clones encoding for the pyruvate dehydrogenase (PDH) E1 beta subunit were isolated from a human liver lambda gt11 cDNA library and characterized. These cDNA clones have identical nucleotide sequences for PDH E1 beta protein coding region but differ in their lengths and in the sequences of their 3'-untranslated regions. The smaller cDNA had an unusual polyadenylation signal within its protein coding region. The cDNA-deduced protein of PDH E1 beta subunit revealed a precursor protein of 359 amino acid residues (Mr 39,223) and a mature protein of 329 residues (Mr 35,894), respectively. Both cDNAs shared high amino acid sequence similarity with that isolated from human foreskin (Koike, K.K., Ohta, S., Urata, Y., Kagawa, Y., and Koike, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 41-45) except for three regions of frameshift mutation. These changes led to dramatic alterations in the local net charges and predicted protein conformation. One of the different sequences in the protein coding region of liver cDNA (nucleotide position 452-752) reported here was confirmed by sequencing the region after amplification of cDNA prepared from human skin fibroblasts by the polymerase chain reaction. Southern blot analysis verified simple patterns of hybridization with E1 beta cDNA, indicating that the PDH E1 beta subunit gene is not a member of a multigene family. The mechanisms of differential expression of the PDH E1 alpha and E1 beta subunits were also studied in established fibroblast cell lines obtained from patients with Leigh's syndrome and other forms of congenital lactic acidosis. In Northern blot analyses for PDH E1 alpha and E1 beta subunits, no apparent differences were observed between two Leigh's syndrome and the control fibroblasts studied: one species of PDH E1 alpha mRNA and three species of E1 beta mRNA were observed in all the cell lines examined. However, in one tricarboxylic acid cycle deficient fibroblast cell line, which has one-tenth of the normal enzyme activity, the levels of immunoreactive PDH E1 alpha and E1 beta subunits were markedly decreased as assessed by immunoblot analyses. These data indicated a regulatory mutation caused by either inefficient translation of E1 alpha and E1 beta mRNAs into protein or rapid degradation of both subunits upon translation. In contrast, the PDH E1 alpha and E1 beta subunits in two fibroblast cell lines from Leigh's syndrome patients appeared to be normal as judged by 1) enzyme activity, 2) mRNA Northern blot, 3) genomic DNA Southern blot, and 4) immunoblot analyses indicating that the lactic acidosis seen in these patients did not result from a single defect in either of these E1 alpha and E1 beta subunits of the PDH complex.  相似文献   

11.
We have isolated a cDNA encoding the branched chain alpha-ketoacid dehydrogenase E1 alpha subunit. A rat liver lambda gt11 expression library was screened with antibody reactive with the 2-oxoisovalerate dehydrogenase (lipoamide) component. A positive clone, lambda BZ304, contains a 1.7-kilobase pair cDNA insert with a 1323-base pair open reading frame. Translation of the open reading frame predicts the 24 residues of the previously reported phosphorylation sites 1 and 2 for the bovine kidney and rabbit heart enzymes. The N-terminal sequence of purified E1 alpha was determined, and this sequence was found 40 residues from the beginning of the deduced peptide sequence. Northern blots of rat liver and muscle RNA demonstrate a single mRNA species of approximately 1.8 kilobase pairs in each tissue, suggesting that this cDNA is nearly full length.  相似文献   

12.
A 1.7-kb cDNA clone encoding the entire precursor of the E1 beta subunit of the branched-chain alpha-ketoacid dehydrogenase (BCKDH) complex was isolated from a bovine liver cDNA library by screening with a mixture of synthetic oligonucleotide probes corresponding to the C-terminal five-residue sequence of the mature E1 beta subunit. A partial amino acid sequence was determined by Edman degradation of the intact subunit and the peptides generated by cleavage at the lysyl bonds. Nucleotide sequence analysis revealed that the isolated cDNA clone contained the 5'-untranslated sequence of 186 nucleotides, the translated sequence of 1176 nucleotides, and the 3'-untranslated sequence of 306 nucleotides with a poly(A) tail. A type AATAAA polyadenylation signal was located 17 nucleotides upstream of the start of a poly(A) tail. Comparison of the amino acid sequence predicted from the nucleotide sequence of the cDNA insert of the clone with the partial amino acid sequence of the mature BCKDH E1 beta subunit showed that the cDNA insert encodes for a 342 amino acid subunit with Mr 37,745 and that the subunit is synthesized as the precursor with a leader sequence of 50 amino acids and processed at the N-terminus. Northern blot analysis using the cDNA insert as a probe showed the presence of a 1.8-1.9-kb mRNA in bovine liver, suggesting that the insert covers nearly a full length of mRNA. Alignment of the deduced amino acid sequence of bovine BCKDH E1 beta with that of the human pyruvate dehydrogenase (PDH) complex E1 beta subunit revealed a high degree of sequence homology throughout the two enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have isolated cDNA clones encoding the bovine and rat gastric H,K-ATPase beta subunit. A bovine abomasum lambda gt11 cDNA library was screened with a monoclonal antibody raised against the rabbit H,K-ATPase beta subunit. A single positive phage clone containing an approximately 900-base pair cDNA insert was identified as reactive with the antibody. The identity of the cDNA was established by comparing the deduced amino acid sequence with sequences of cyanogen bromide fragments of the porcine H,K-ATPase beta subunit. Polymerase chain reaction and rapid amplification of cDNA ends were used to generate a cDNA fragment encoding the carboxyl-terminal portion of the rat gastric H,K-ATPase beta subunit. A rat stomach cDNA library was screened with the polymerase chain reaction product, and several full-length beta subunit cDNA clones were identified. The open reading frame predicts a protein of 294 amino acids with a molecular weight of 33,689. The rat H,K-ATPase beta subunit shows 41% amino acid sequence identity to the rat Na,K-ATPase beta 2 subunit and shares a number of structural similarities with Na,K-ATPase beta subunit isoforms. By analyzing the segregation of restriction fragment length polymorphisms among recombinant inbred strains of mice, we localized the H,K-ATPase beta subunit gene to murine chromosome 8. Northern and Western blot analysis reveals that this gene is expressed exclusively in stomach. Our results suggest that the H,K-ATPase and Na,K-ATPase beta subunits evolved from a common ancestral gene and may play similar functional roles in enzyme activity.  相似文献   

14.
R M Brown  H H Dahl  G K Brown 《Genomics》1989,4(2):174-181
The functional gene locus for the E1 alpha subunit of the human pyruvate dehydrogenase complex has been localized to the p22.1-22.2 region of the X chromosome by in situ hybridization and analysis of somatic cell hybrids with various human X-chromosome rearrangements. Another locus showing significant cross-hybridization with an E1 alpha cDNA probe was detected on chromosome 4, in the region q22. The X-chromosome localization of the pyruvate dehydrogenase E1 alpha subunit gene provides a number of possible explanations for the clinical and biochemical variability which is a major feature of human pyruvate dehydrogenase deficiency.  相似文献   

15.
16.
17.
18.
In the pyruvate dehydrogenase complex (PDHC) of Zymomonas mobilis the beta subunit of the pyruvate dehydrogenase (E1p) as well as the acetyltransferase (E2p) contain an N-terminal lipoyl domain. Both lipoyl domains were acetylated in vitro using 2-14C-pyruvate as a substrate, demonstrating that both lipoyl domains can accept acetyl groups from the E1 component. As previously shown the structural genes (pdhA alpha beta, pdhB, lpd) encoding the pyruvate dehydrogenase complex of Z. mobilis are located in two distinct gene clusters, pdhA alpha beta and pdhB-orf2-lpd (U. Neveling et al. (1998) J. Bacteriol. 180, 1540-1548). Analysis of pdh gene expression using lacZ fusions revealed that the DNA fragments upstream of pdhA alpha, pdhB and lpd each have promoter activities. These pdh promoter activities were 7-30-fold higher in Z. mobilis than in Escherichia coli.  相似文献   

19.
20.
J Sugihara  T O Baldwin 《Biochemistry》1988,27(8):2872-2880
Ten recombinant plasmids have been constructed by deletion of specific regions from the plasmid pTB7 that carries the luxA and luxB genes, encoding the alpha and beta subunits of luciferase from Vibrio harveyi, such that luciferases with normal alpha subunits and variant beta subunits were produced in Escherichia coli cells carrying the recombinant plasmids. The original plasmid, which conferred bioluminescence (upon addition of exogenous aldehyde substrate) on E. coli carrying it, was constructed by insertion of a 4.0-kb HindIII fragment of V. harveyi DNA into the HindIII site of plasmid pBR322 [Baldwin, T.O., Berends, T., Bunch, T. A., Holzman, T. F., Rausch, S. K., Shamansky, L., Treat, M. L., & Ziegler, M. M. (1984) Biochemistry 23, 3663-3667]. Deletion mutants in the 3' region of luxB were divided into three groups: (A) those with deletions in the 3' untranslated region that left the coding sequences intact, (B) those that left the 3' untranslated sequences intact but deleted short stretches of the 3' coding region of the beta subunit, and (C) those for which the 3' deletions extended from the untranslated region into the coding sequences. Analysis of the expression of luciferase from these variant plasmids has demonstrated two points concerning the synthesis of luciferase subunits and the assembly of those subunits into active luciferase in E. coli. First, deletion of DNA sequences 3' to the translational open reading frame of the beta subunit that contain a potential stem and loop structure resulted in dramatic reduction in the level of accumulation of active luciferase in cells carrying the variant plasmids, even though the luxAB coding regions remained intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号