首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The genes encoding both subunits of the succinyl-CoA synthetase of Escherichia coli have been identified as distal genes of the suc operon, which also encodes the dehydrogenase (Elo; sucA) and succinyltransferase (E2o; sucB) components of the 2-oxoglutarate dehydrogenase complex. The newly defined genes express polypeptides of 41 kDa (sucC) and 31 kDa (sucD), corresponding to the beta and alpha subunits of succinyl-CoA synthetase, respectively. The genes are thus located at 16.8 min in the E. coli linkage map, together with the citrate synthase (gltA) and succinate dehydrogenase (sdh) genes, in a cluster of nine citric acid cycle genes: gltA-sdhCDAB-sucABCD. Four deletion strains lacking all of these citric acid cycle enzymes were characterized. The succinyl-CoA synthetase activities of strains harbouring plasmids containing the sucC and sucD genes were amplified some fourfold. Further enzymological studies indicated that expression of succinyl-CoA synthetase is coordinately regulated with 2-oxoglutarate dehydrogenase.  相似文献   

2.
G Fong  W A Bridger 《Biochemistry》1992,31(24):5661-5664
Succinyl-CoA synthetase of Escherichia coli (alpha 2B2 subunit structure) has been shown to fold and assemble without participation by molecular chaperones. Renaturation experiments showed that purified bacterial chaperone GroEL has no effect on the folding and assembly of the active tetrameric enzyme. When isolated 35S-labeled alpha or beta subunits were incubated with GroEL in the absence of ATP, there was no complex formation between the subunits and GroEL. These in vitro results were confirmed by in vivo analysis of the folding and assembly of newly synthesized succinyl-CoA synthetase subunits. When expression of the subunits was induced in E. coli strains that bear GroEL or GroES temperature-sensitive mutations, the assembly of active succinyl-CoA synthetase was not affected as the temperature was raised to 43 degrees C. These and other observations are discussed that indicate that folding and assembly of succinyl-CoA synthetase may be independent of assistance by any chaperone.  相似文献   

3.
4.
5.
The complete nucleotide sequence of the Escherichia coli pheST operon coding for the two subunits of phenylalanyl-tRNA synthetase (an alpha 2 beta 2-type enzyme) has been determined. Another open reading frame (prp) was revealed downstream from pheT which was identified as himA, the gene for the alpha subunit of the integration host factor.  相似文献   

6.
The genes encoding proteins responsible for activity of the E1 component of branched-chain-oxoacid dehydrogenase of Pseudomonas putida have been subcloned and the nucleotide sequence of this region determined. Open reading frames encoding E1 alpha (bkdA1, 1233 bp) and E1 beta (bkdA2, 1020 bp) were identified with the aid of the N-terminal sequence of the purified subunits. The Mr of E1 alpha was 45,158 and of E1 beta was 37,007, both calculated without N-terminal methionine. The deduced amino acid sequences of E1 alpha and E1 beta had no similarity to the published sequences of the E1 subunits of pyruvate and 2-oxoglutarate dehydrogenases of Escherichia coli. However, there was substantial similarity between the E1 alpha subunits of Pseudomonas and rat liver branched-chain-oxoacid dehydrogenases. In particular, the region of the E1 alpha subunit of the mammalian branched-chain-oxoacid dehydrogenase which is phosphorylated, was found to be highly conserved in the Pseudomonas E1 alpha subunit. There was also considerable similarity between the E1 beta subunits of Pseudomonas branched-chain-oxoacid dehydrogenase and human pyruvate dehydrogenase.  相似文献   

7.
8.
In Archaea, acetate formation and ATP synthesis from acetyl-CoA is catalyzed by an unusual ADP-forming acetyl-CoA synthetase (ACD) (acetyl-CoA + ADP + P(i) acetate + ATP + HS-CoA) catalyzing the formation of acetate from acetyl-CoA and concomitant ATP synthesis by the mechanism of substrate level phosphorylation. ACD belongs to the protein superfamily of nucleoside diphosphate-forming acyl-CoA synthetases, which also include succinyl-CoA synthetases (SCSs). ACD differs from SCS in domain organization of subunits and in the presence of a second highly conserved histidine residue in the beta-subunit, which is absent in SCS. The influence of these differences on structure and reaction mechanism of ACD was studied with heterotetrameric ACD (alpha(2)beta(2)) from the hyperthermophilic archaeon Pyrococcus furiosus in comparison with heterotetrameric SCS. A structural model of P. furiosus ACD was constructed suggesting a novel spatial arrangement of the subunits different from SCS, however, maintaining a similar catalytic site. Furthermore, kinetic and molecular properties and enzyme phosphorylation as well as the ability to catalyze arsenolysis of acetyl-CoA were studied in wild type ACD and several mutant enzymes. The data indicate that the formation of enzyme-bound acetyl phosphate and enzyme phosphorylation at His-257alpha, respectively, proceed in analogy to SCS. In contrast to SCS, in ACD the phosphoryl group is transferred from the His-257alpha to ADP via transient phosphorylation of a second conserved histidine residue in the beta-subunit, His-71beta. It is proposed that ACD reaction follows a novel four-step mechanism including transient phosphorylation of two active site histidine residues:  相似文献   

9.
The pdhABCD operon of Bacillus subtilis encodes the pyruvate decarboxylase (E1alpha and E1beta), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3) subunits of the pyruvate dehydrogenase multienzyme complex (PDH). There are two promoters: one for the entire operon and an internal one in front of the pdhC gene. The latter may serve to ensure adequate quantities of the E2 and E3 subunits, which are needed in greater amounts than E1alpha and E1beta. Disruptions of the pdhB, pdhC, and pdhD genes were isolated, but attempts to construct a pdhA mutant were unsuccessful, suggesting that E1alpha is essential. The three mutants lacked PDH activity, were unable to grow on glucose and grew poorly in an enriched medium. The pdhB and pdhC mutants sporulated to only 5% of the wild-type level, whereas the pdhD mutant strain sporulated to 55% of the wild-type level. This difference indicated that the sporulation defect of the pdhB and pdhC mutant strains was due to a function(s) of these subunits independent of enzymatic activity. Growth, but not low sporulation, was enhanced by the addition of acetate, glutamate, succinate, and divalent cations. Results from the expression of various spo-lacZ fusions revealed that the pdhB mutant was defective in the late stages of engulfment or membrane fusion (stage II), whereas the pdhC mutant was blocked after the completion of engulfment (stage III). This analysis was confirmed by fluorescent membrane staining. The E1beta and E2 subunits which are present in the soluble fraction of sporulating cells appear to function independently of enzymatic activity as checkpoints for stage II-III of sporulation.  相似文献   

10.
A lambda phage has been isolated which specifically transduces the Escherichia coli pheS and pheT genes coding for the alpha and beta subunits of the phenylalanyl-tRNA synthetase (PRS). This phage transduces with high frequency (i) several temperature-sensitive PRS mutants to thermoresistance and (ii) a p-fluorophenylalanine resistant PRS mutant to sensitivity against this amino-acid analog. The in vitro PRS activities of such lysogens suggest that the alpha and beta subunits coded by the transducing phage complement the mutant host PRS-subunits in vivo by means of formation of hybrid enzymes.The transducing lambda phages were also used to infect UV light irradiated cells. The SDS-gel electrophoretic analysis of the proteins synthesized in such cells revealed that the phage codes at least for four different E. coli proteins. Two proteins with molecular weights of 94,000 and 38,000 daltons cross-reacted with an anti PRS serum and were thus identified as the beta and alpha subunits of PRS, respectively. A third protein with a molecular weight of 22,000 daltons is identical with the ribosomal initiation factor IF3 (Springer et al., 1977b). The other protein (Mr 78,000) is still unidentified.  相似文献   

11.
P Dessen  A Ducruix  R P May  S Blanquet 《Biochemistry》1990,29(12):3039-3046
Escherichia coli phenylalanyl-tRNA synthetase is a tetrameric protein composed of two types of protomers. In order to resolve the subunit organization, neutron small-angle scattering experiments have been performed in different contrasts with all types of isotope hybrids that could be obtained by reconstituting the alpha 2 beta 2 enzyme from the protonated and deuterated forms of the alpha and beta subunits. Experiments have been also made with the isolated alpha promoter. A model for the alpha 2 beta 2 tetramer is deduced where the two alpha promoters are elongated ellipsoids (45 x 45 x 160 A3) lying side by side with an angle of about 40 degrees between their long axes and where the two beta subunits are also elongated ellipsoids (31 x 31 x 130 A3) with an angle of 30 degrees between their axes. This model was obtained by assuming that the two pairs of subunits are in contact in an orthogonal manner and by taking advantage of the measured distance between the centers of mass of the alpha 2 and beta 2 pairs (d = 23 +/- 2 A).  相似文献   

12.
The E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex from the yeast Saccharomyces cerevisiae were purified. Antibodies raised against these subunits were used to clone the corresponding genes from a genomic yeast DNA library in the expression vector lambda gt11. The gene encoding the E1 alpha subunit was unique and localized on a 1.7-kb HindIII fragment from chromosome V. The identify of the gene was confirmed in two ways. (a) Expression of the gene in Escherichia coli produced a protein that reacted with the anti-E1 alpha serum. (b) Gene replacement at the 1.7-kb HindIII fragment abolished both pyruvate dehydrogenase activity and the production of proteins reacting with anti-E1 alpha serum in haploid cells. In addition, the 1.7-kb HindIII fragment hybridized to a set of oligonucleotides derived from amino acid sequences from the N-terminal and central regions of the human E1 alpha peptide. We propose to call the gene encoding the E1 alpha subunit of the yeast pyruvate dehydrogenase complex PDA1. Screening of the lambda gt11 library using the anti-E1 beta serum resulted in the reisolation of the RAP1 gene, which was located on chromosome XIV.  相似文献   

13.
sucAB and sucCD of Escherichia coli encode enzymes that generate succinyl-CoA from 2-oxoglutarate and succinate, respectively. Their mutual essentiality was studied. sucAB and sucCD could be deleted individually, but not simultaneously. The mutual essentiality of sucAB and sucCD was further confirmed by the conditional expression of sucABCD, sucAB, and sucCD under the control of a P(BAD) in E. coli MG1655, E. coli MG1655 (DeltasucCD), and E. coli MG1655 (DeltasucAB), respectively. These strains grew well in Luria-Bertani medium containing 0.1% arabinose, but not in the absence of arabinose unless the medium was supplemented with succinyl-CoA. Our results indicate that either sucAB or sucCD is enough to produce succinyl-CoA that is essential for cell viability.  相似文献   

14.
15.
Recent sequencing experiments have identified alpha-His246 as the phosphorylation site of Escherichia coli succinyl-CoA synthetase [Buck, D., Spencer, M. E., & Guest, J. R. (1985) Biochemistry 24, 6245-6252]. We have replaced alpha-His246 with an asparagine residue using site-directed mutagenesis techniques. The resulting mutant enzyme (designated H246N) exhibited no enzyme activity, as expected, but was found as a structurally intact, stable tetramer. Small differences in the net charge of H246N and wild-type enzymes were first detected on native polyacrylamide gels. These charge differences were resolved by using native isoelectric focusing gels to further separate the wild-type enzyme into diphosphorylated, monophosphorylated, and unphosphorylated species. The enzyme species were found to be interconvertible upon incubation with the appropriate enzyme substrate(s). Sample mixtures containing increasing molar ratios of H246N (alpha H246N beta)2 to wild-type enzyme (alpha beta)2 were unfolded and then refolded. The refolded enzyme mixtures were analyzed for enzymatic activity and separated on native isoelectric focusing gels. The hybrid enzyme (alpha beta alpha H246N beta) retained a significant amount of enzyme activity and also exhibited substrate synergism (stimulation of succinate in equilibrium succinyl-CoA exchange in the presence of ATP). Substrate synergism with this enzyme has been interpreted as evidence for interaction between active sites in such a way that only a single phosphoryl group is covalently attached to the enzyme at a given time [Wolodko, W. T., Brownie, E.R., O'Connor, M. D., & Bridger, W. A. (1983) J. Biol. Chem. 258, 14116-14119]. On the contrary, we conclude that tetrameric succinyl-CoA synthetase from E. coli is comprised of two independently active dimer molecules associated together to form a "dimer of dimers" that displays substrate synergism within each dimer and not necessarily between dimers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The nucleotide sequence of a 3180-base-pair segment of DNA, containing the sucA gene encoding the 2-oxoglutarate dehydrogenase component (E1o) of the 2-oxoglutarate dehydrogenase complex of Escherichia coli, has been determined by the dideoxy chain-termination method. The sucA structural gene contains 2796 base pairs (932 codons, excluding the initiation codon AUG) and encodes a polypeptide having a glutamine residue at the amino terminus, a glutamate residue at the carboxy-terminus and a calculated Mr = 104905. The predicted amino acid composition is in good agreement with published information obtained by hydrolysis of the purified enzyme. There is a striking lack of sequence homology between the 2-oxoglutarate dehydrogenase (E1o) and the corresponding pyruvate dehydrogenase (E1p), which suggests that the two components are not closely related in evolutionary terms. The location and polarity of the sucA gene, relative to the restriction map of the corresponding segment of DNA, are consistent with it being the proximal gene of the suc operon, as defined in previous genetic and post-infection labelling studies, but it could also form part of a more complex regulatory unit. The sucA gene is preceded by a segment of DNA that contains many substantial regions of hyphenated dyad symmetry including an IS-like sequence of the type that is thought to function as an intercistronic regulatory element. This segment also contains three putative RNA polymerase binding sites and a good ribosome binding site.  相似文献   

18.
A novel molecular species contributes about 5% of the total tryptophan synthetase of Escherichia coli derepressed for the trp operon enzymes. The new species is identified under conditions in which the dissociation of the two nonidentical subunits of the tryptophan synthetase complex is favored. The new species sediments at 5.7S, catalyzes the conversion of indole-3-glycerol phosphate to indole, and has been designated alpha(5.7-S). Although alpha(5.7-S) is not observed in extracts of trpA or trpB mutant strains deficient in the ability to form tryptophan synthetase alpha or beta2 subunits, respectively, a mixture of the two extracts allows the formation of alpha(5.7-S). Similar results are obtained when a homogeneous alpha protein is mixed with an extract of a trpA mutant strain, suggesting that the interaction of alpha and beta2 proteins is obligatory for alpha(5.7-S) formation. One can obtain a beta2 protein preparation that when mixed with a pure alpha protein gives no alpha(5.7-S). Therefore, the interaction of alpha and beta2 proteins alone is not sufficient for the formation of alpha(5.7-S). When a mixture of alpha and beta2 proteins devoid of alpha(5.7-S) is added to extracts of trp deletion mutants, the novel species can be reconstituted in vitro only when deletions are used that carry at least the operator-proximal part of the trpB gene. Therefore, it is concluded that the alpha(5.7-S) species of tryptophan synthetase results from the interaction of the alpha protein, the beta2 protein, and a third component, beta', specified by the deoxyribonucleic acid defined by the end points of two trp deletion mutants.  相似文献   

19.
The form of succinyl-CoA synthetase found in mammalian mitochondria is known to be an alpha beta dimer. Both GTP- and ATP-specific isozymes are present in various tissues. We have isolated essentially identical complementary DNA clones encoding the beta subunit of pig heart succinyl-CoA synthetase from both newborn and adult tissues. These cDNAs include a 1.4-kb sequence encoding the cytoplasmic precursor to the beta subunit comprised of 417 amino acid residues including a 22-residue mitochondrial targeting sequence. The cDNA encoding the 395-amino acid, 42,502-Da mature protein was confirmed to be the succinyl-CoA synthetase beta subunit by agreement with the N-terminal protein sequence and by high homology to prokaryotic forms of the beta subunit that were previously cloned (about 45% identical to beta from Escherichia coli). In contrast to a previous report (Nishimura, J.S., Ybarra, J., Mitchell, T., & Horowitz, P.M., 1988, Biochem. J. 250, 429-434), we found no tryptophan residue to be encoded in the sequence for the mature beta subunit, and this finding is corroborated by the fact that highly purified pig heart succinyl-CoA synthetase shows no tryptophan fluorescence or tryptophan content in amino acid compositional analysis. The cDNA clones encoding the mature pig heart beta subunit and its counterpart alpha subunit were coexpressed in a deletion mutant strain of E. coli. Recovery of succinyl-CoA synthetase activity demonstrated that this combination of subunits forms a productive enzymatic complex having GTP specificity.  相似文献   

20.
Autogenous regulation of RNA polymerase beta subunit synthesis in vitro.   总被引:4,自引:0,他引:4  
The effects of Escherichia coli RNA polymerase and its subassemblies and subunits on the in vitro synthesis of beta subunit directed by DNA from a lambda transducing phage lambdadrif+-6 were investigated. This phage carries the structural gene (rpoB) for beta subunit as well as the genes for EF (translation elongation factor)-Tu, some ribosomal proteins, and stable RNAs of the E. coli chromosome. Among the RNA polymerase proteins examined, the two oligomers, holoenzyme and alpha2beta complex, repressed the synthesis of only the beta subunit but not of other proteins encoded by the phage DNA. The results indicate that the expression of at least the betabeta' (rpoBC) operon is under autogenous regulation, in which both holoenzyme and alpha2beta complex function as regulatory molecules with repressor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号