首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
E2 enzymes catalyze attachment of ubiquitin and ubiquitin-like proteins to lysine residues directly or through E3-mediated reactions. The small ubiquitin-like modifier SUMO regulates nuclear transport, stress response, and signal transduction in eukaryotes and is essential for cell-cycle progression in yeast. In contrast to most ubiquitin conjugation, the SUMO E2 enzyme Ubc9 is sufficient for substrate recognition and lysine modification of known SUMO targets. Crystallographic analysis of a complex between mammalian Ubc9 and a C-terminal domain of RanGAP1 at 2.5 A reveals structural determinants for recognition of consensus SUMO modification sequences found within SUMO-conjugated proteins. Structure-based mutagenesis and biochemical analysis of Ubc9 and RanGAP1 reveal distinct motifs required for substrate binding and SUMO modification of p53, IkappaBalpha, and RanGAP1.  相似文献   

2.
3.
4.
SUMO (small ubiquitin-related modifier), a 12 kDa protein with distant similarity to ubiquitin, covalently binds to many proteins in eukaryotic cells. In contrast to ubiquitination, which mainly regulates proteasome-dependent degradation and protein sorting, sumoylation is known to regulate assembly and disassembly of protein complexes, protein localization and stability, and so on. SUMO is primarily localized to the nucleus, and many SUMO substrates are nuclear proteins involved in DNA transaction. However, certain roles of SUMO conjugates have been shown outside the nucleus. Particularly in budding yeast, SUMO is also localized to the bud-neck in a cell cycle-dependent manner. The first and prominent SUMO substrates are septins, evolutionally conserved proteins required for cytokinesis in yeast. Recent analysis of human septin structure would greatly facilitate the study of the functions of these SUMO conjugates. SUMO modification of septins is regulated by cell cycle-dependent nuclear transport of PIAS-type Siz1 (SUMO E3) and Ulp1 desumoylation enzyme in yeast. Domains outside the SUMO-ligase core (SP-RING) of Siz1 ensure its regulations. Furthermore, newly discovered ubiquitin ligases that specifically recognize poly-SUMO conjugates could lead to degradation of SUMO conjugates. Thus, protein modifications seem to be regulated in an unexpectedly complex manner. In this review, we focus on various regulations in yeast septin sumoylation and discuss its possible functions.  相似文献   

5.
6.
Vatsyayan J  Qing G  Xiao G  Hu J 《EMBO reports》2008,9(9):885-890
A primary step in activating the alternative nuclear factor-kappaB (NF-kappaB) pathway requires NF-kappaB2/p100 processing to generate p52. In most cases, stimuli-induced p100 processing is dependent on NF-kappaB-inducing kinase/IkappaB kinase alpha-mediated phosphorylation and ubiquitination. Here, we report that post-translational modification of p100 at specific sites by the small ubiquitin-like modifier (SUMO) is another determining factor for stimuli-induced p100 processing. The results show that basal SUMO modification is required for stimuli-induced p100 phosphorylation and that blocking SUMOylation of p100, either by site-directed mutation or by short interfering RNA-targeted diminution of E2 SUMO-conjugating enzyme Ubc9, inhibits various physiological stimuli-induced p100 processing and ultimate activation of the alternative NF-kappaB pathway. Together, these findings show the crucial role of SUMO1 modification in p100 processing and provide mechanistic insights into the participation of SUMO1 modification in the regulation of signal transduction.  相似文献   

7.
8.
Qu J  Liu GH  Wu K  Han P  Wang P  Li J  Zhang X  Chen C 《PloS one》2007,2(10):e1085
Small ubiquitin-related protein modifiers (SUMO) modification is an important mechanism for posttranslational regulation of protein function. However, it is largely unknown how the sumoylation pathway is regulated. Here, we report that nitric oxide (NO) causes global hyposumoylation in mammalian cells. Both SUMO E2 conjugating enzyme Ubc9 and E3 ligase protein inhibitor of activated STAT3 (Pias3) were targets for S-nitrosation. S-nitrosation did not interfere with the SUMO conjugating activity of Ubc9, but promoted Pias3 degradation by facilitating its interaction with tripartite motif-containing 32 (Trim32), a ubiquitin E3 ligase. On the one hand, NO promoted Trim32-mediated Pias3 ubiquitination. On the other hand, NO enhanced the stimulatory effect of Pias3 on Trim32 autoubiquitination. The residue Cys459 of Pias3 was identified as a target site for S-nitrosation. Mutation of Cys459 abolished the stimulatory effect of NO on the Pias3-Trim32 interaction, indicating a requirement of S-nitrosation at Cys459 for positive regulation of the Pias3-Trim32 interplay. This study reveals a novel crosstalk between S-nitrosation, ubiquitination, and sumoylation, which may be crucial for NO-related physiological and pathological processes.  相似文献   

9.
10.
11.
The nucleoporin RanBP2 has SUMO1 E3 ligase activity.   总被引:35,自引:0,他引:35  
Posttranslational modification with SUMO1 regulates protein/protein interactions, localization, and stability. SUMOylation requires the E1 enzyme Aos1/Uba2 and the E2 enzyme Ubc9. A family of E3-like factors, PIAS proteins, was discovered recently. Here we show that the nucleoporin RanBP2/Nup358 also has SUMO1 E3-like activity. RanBP2 directly interacts with the E2 enzyme Ubc9 and strongly enhances SUMO1-transfer from Ubc9 to the SUMO1 target Sp100. The E3-like activity is contained within a 33 kDa domain of RanBP2 that lacks RING finger motifs and does not resemble PIAS family proteins. Our findings place SUMOylation at the cytoplasmic filaments of the NPC and suggest that, at least for some substrates, modification and nuclear import are linked events.  相似文献   

12.
13.
14.
While numerous small ubiquitin‐like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid‐dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ‐K‐X‐E/D consensus motif, such as CBP and Elk‐1, but not substrates with core ψ‐K‐X‐E/D motif alone or SUMO‐interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia‐elicited modulation of sumoylation and target gene expression of CBP and Elk‐1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response.  相似文献   

15.
16.
17.
SUMOylation occurs predominantly in the nucleus, but non-nuclear proteins can also be SUMOylated. It is unclear how intracellular trafficking of the SUMOylation enzymes is regulated to catalyze SUMOylation in different cellular compartments. Here we report that the SAE2 subunit of human SUMO activation enzyme (SAE) underwent rapid nucleocytoplasmic shuttling and its nuclear accumulation depended on SUMO modification at the C terminus. The SUMOylation sites included three Lys residues on the bipartite nuclear localization sequence (NLS) and two Lys residues outside of but adjacent to the NLS, and their SUMOylation was catalyzed by Ubc9. Because SAE2 forms a tight heterodimer with SAE1 and it controls the trafficking of the heterodimer, this study has identified the mechanism used to localize SAE to the nucleus. Similar mechanisms are likely to exist for other proteins that depend on SUMOylation for nuclear localization.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号