首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 1,2,4-triazole derivatives containing 1,4-benzodioxan (5a-5q) have been designed, synthesized, structurally determined, and their biological activities were evaluated as potential MetAP2 inhibitors. All the synthesized compounds were first reported. Among the compounds, compound 5k showed the most potent biological activity against HEPG2 cancer cell line (IC(50)=0.81 μM for HEPG2 and IC(50)=0.93 μM for MetAP2), which was comparable to the positive control. Docking simulation by positioning compound 5k into the MetAP2 structure active site was performed to explore the possible binding model. The results of apoptosis and Western-blot assay demonstrated that compound 5k possessed good antitumor activity against HEPG2 cancer cell line. Therefore, compound 5k with potent inhibitory activity in tumor growth inhibition may be a potential antitumor agent against HEPG2 cancer cell.  相似文献   

2.
Motivated by the potential anticancer activity of both coumarin and 2-aminothiazole nuclei, a new set of thiazol-2-yl hydrazono-chromen-2-one analogs were efficiently synthesized aiming to obtain novel hybrids with potential cytotoxic activity. MTT assay investigated the significant potency of all the target compounds against the human cervical cancer cell lines (HeLa cells). Cell cycle analysis showed that the representative compound 8a led to cell cycle cessation at G0/G1 phase indicating that CDK2/E1complex could be the plausible biological target for these newly synthesized compounds. Thus, the most active compounds (7c and 8a-c) were tested for their CDK2 inhibitory activity. The biological results revealed their significant CDK2 inhibitory activity with IC50 range of 0.022–1.629 nM. Moreover, RT-PCR gene expression assay showed that compound 8a increased the levels of the nuclear CDK2 regulators P21 and P27 by 2.30 and 5.7 folds, respectively. ELISA tequnique showed also that compound 8a led to remarkable activation of caspases-9 and -3 inducing cell apoptosis. QSAR study showed that the charge distribution and molecular hydrophobicity are the structural features affecting cytotoxic activity in this series. Molecular docking study for the most potent cytotoxic compounds (7c and 8a-c) rationalized their superior CDK2 inhibitory activity through their hydrogen bonding and hydrophobic interactions with the key amino acids in the CDK2 binding site. Pharmacokinetic properties prediction of the most potent compounds showed that the newly synthesized compounds are not only with promising antitumor activity but also possess promising pharmacokinetic properties.  相似文献   

3.
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure–activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5′-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.  相似文献   

4.
A novel series of l0-(3,5-dimethoxy)benzyl-9(10H)-acridone derivatives with terminal ammonium substituents at C2 and C7 positions on the acridone ring were successfully synthesized as antiproliferation agents. The biologic activity of the acridone compounds against leukemia CCRF-CEM cells demonstrated that some of the compounds displayed good antiproliferative activity, among which compound 6a containing dimethylamine substituents at the terminal C2 and C7 positions exhibited the highest cytotoxicity with IC50 at 0.3 μM. In addition compound 6a showed little toxicity against normal 293T cells proliferation with IC50 more than 100 μM. Further study indicated that compound 6a had strong binding activity to human telomeric G-quadruplex DNA, as detected by mass spectrometry, CD spectroscopy, UV absorption, FRET and fluorescence quenching assays. Our data suggested that the activity of 6a might be associated with its stabilization of G-quadruplex DNA, which can be developed as potent antitumor agent.  相似文献   

5.
In an attempt to arrive at a more potent antitumor agent than the parent natural saponin hederacolchiside A1, 23 hederacolchiside A1 derivatives (4a-4w) were synthesized via Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition and screened in vitro for cytotoxicity against six human cancer cell lines. The structure-activity relationship of these compounds was elucidated, and the biological screening results showed that most of the compounds exhibited moderate to high levels of antitumor activities against the tested cell lines and some of them displayed more potent inhibitory activities compared with hederacolchiside A1. Compound 4f showed a 2- to 7-fold more potent activity than hederacolchiside A1. The mechanistic study of 4f revealed that this compound can induce cell apoptosis in HepG2 cells via mitochondrial-mediated intrinsic pathways.  相似文献   

6.
Inducing apoptosis is a promising therapeutic approach to overcome cancer. In this study, 30 compounds were synthesized and evaluated for their antiproliferative activity against three tumor cell lines in vitro: A875, H460 and Hela cancer cells by the MTT assay. The most potent analogue 7a, a novel compound was first reported by our group, inhibited the proliferation of A875 cells with an IC50 value of 98 nM. Flow cytometry analysis and morphological analysis suggested that compound 7a had potential anticancer efficacy via G2/M cell cycle arrest, which could be attributed to its proliferation and apoptosis, and also in a concentration-dependent manner. The SAR analysis indicated that the substituents R2 played a crucial role in the antiproliferation activity.  相似文献   

7.
A series of disubstituted xanthones was obtained by cationic modification of xanthone’s C2 and C7 with amine groups of different pKa values. Modified structures by using moieties with high pKa values had good antitumor activity according to the MTT assay, AO/EB staining and flow cytometry assay, especially bis-dimethylamine derivative (5a). Further study indicated that compound 5a had good binding activity to telomeric G-quadruplex DNA, as detected by using spectroscopy methods, melting profiles, polymerase chain reaction stop assay and molecular modeling study. The results suggested that the antitumor activity of 5a might be associated with its stabilization of G-quadruplex DNA, which could be developed as new G-quadruplex DNA stabilizer and potent antitumor agents.  相似文献   

8.
A series of dipeptide derivatives from dehydroabietic acid were designed and synthesized as novel antitumor agents. The antitumor activities screening indicated that many compounds showed moderate to high levels of inhibition activities against NCI-H460, HepG2, SK-OV-3, BEL-7404, HeLa and HCT-116 cancer cell lines and that some displayed more potent inhibitory activities than commercial anticancer drug 5-fluorouracil. The mechanism of representative compound 7b was studied by AO/EB staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay, DNA ladder assay and flow cytometry, which exhibited that the compound could induce apoptosis in HeLa cells. Further investigation showed that compound 7b induced apoptosis of HeLa cells through a mitochondrial pathway.  相似文献   

9.
A series of isosteric surrogates of the 4-phenyl group in luminespib were investigated as new scaffolds of the Hsp90 inhibitor for the discovery of novel antitumor agents. Among the synthesized surrogates of isoxazole and pyrazole, compounds 4a, 5e and 12b exhibited potent Hsp90 inhibition in ATPase activity and Her2 degradation assays and significant antitumor activity in A2780 and HCT116 cell lines. Animal studies indicated that compared to luminespib, their activities were superior in A2780 or NCI-H1975 tumor xenograft models. A molecular modeling study demonstrated that compound 4a could fit nicely into the N-terminal ATP binding pocket.  相似文献   

10.
The key function of microtubules and mitotic spindle in cell division make them attractive targets in anticancer therapy. In the present study, functionalized in 3 position 2-phenyl- and 2-alkylbenzo[b]furans were synthesized and evaluated as antitumor agents. Among the synthesized derivatives 13a, 13b and 14 exhibited the most potent antiproliferative activity against human melanoma A375 cell line with IC50 values of 2.85 µM, 0.86 µM, 0.09 µM, respectively. The most promising compound defined was 14 with three methoxy groups in the 3-aroyl substituent and 7-methoxy group in 2-phenylbenzo[b]furan skeleton. Tubulin polymerization assay, confocal microscopy imaging and flow cytometry analysis revealed that 2-phenyl-3-aroylbenzo[b]furans (13a, 13b and 14) inhibited tubulin polymerization leading to disruption of mitotic spindle formation, cell cycle arrest in G2/M phase and apoptosis.  相似文献   

11.
In an effort to discover potent antitumor agents, a series of novel C-7-heteroaryl-substituted camptothecin derivatives were designed and synthesized via microwave-promoted Suzuki coupling reaction. These analogs were then assessed for cytotoxicity against three human tumor cell lines, A549, HCT116, HT-29, and inhibitory effects on topoisomerase I. All of the new compounds showed potent inhibition of human tumor cell growth, among which compound 10a showed higher cytotoxic activity than that of SN-38. Furthermore, this series of compounds retained or enhanced Topo I inhibition.  相似文献   

12.
A series of 4,4′-bis-[2-(6-N-substituted-amidino)indolyl] diphenyl ether have been synthesized and tested for their in vitro antibacterial activity including a range of Gram-positive and Gram-negative pathogens and cytotoxicity. Most of these compounds have mainly shown anti-Gram positive bacteria activities especially against drug resistant bacterial strains MRSA, MRSE and VRE. The anti-MRSA and anti-MRSE activities of compound 7a and 7j were more potent than that of the lead compound 2, levofloxacin and vancomycin. Interestingly, 7j had greatly improved anti negative bacterial activity, especially for the producing NDM-1 Klebsiella pneumonia strain and less toxic than that of the lead compound 2.  相似文献   

13.
A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC50?=?4.3–21.2?μg/mL) than the reference drug doxorubicin (IC50?=?26.1?μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC50?=?25.2 and 28.0?μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC50?=?11.1, 16.7 and 21.2?μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC50 values of 9.37, 2.89 and 6.13?μM, respectively, compared to the reference drug colchicine (IC50?=?6.93?μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100?ps. MD results of compound 3a showed that it reached the stable state after 30?ps which was in agreement with the calculated potential and kinetic energy of compound 3a.  相似文献   

14.
A new series of benzimidazole linked pyrazole derivatives were synthesized by cyclocondensation reaction through one-pot multicomponent reaction in absolute ethanol. All the synthesized compounds were tested for their in vitro anticancer activities on five human cancer cell lines including MCF-7, HaCaT, MDA-MB231, A549 and HepG2. EGFR receptor inhibitory activities were carried out for all the compounds. Majority of the compounds showed potent antiproliferative activity against the tested cancer cell lines. Compound 5a showed the most effective activity against the lungs cancer cell lines (IC50 = 2.2 µM) and EGFR binding (IC50 = 0.97 µM) affinity as compared to other members of the series. Compound 5a inhibited growth of A549 cancer cells by inducing a strong G2/M phase arrest. In addition, same compound inhibited growth of A549 cancer cells by inducing apoptosis. In molecular docking studies compound 5a was bound to the active pocket of the EGFR (PDB 1M17) with five key hydrogen bonds and two π-π interaction with binding energies ΔG = −34.581 Kcal/mol.  相似文献   

15.
Abstract-Reaction of 6af individually with 2-methylsulfonyl-4,6-dimethoxypyrimidine yielded 7af in excellent yield. The newly synthesized heterocycles were characterized by IR, 1H NMR, and mass spectral data. Compounds 7af was screened for their anti-inflammatory activity and were compared with standard drugs. Of the compounds studied, the compound 7e showed more potent activity than the standard drugs at all doses tested.  相似文献   

16.
A series of dihydro-pyrazolyl-thiazolinone derivatives (5a5t) have been synthesized and their biological activities were also evaluated as potential cyclooxygenase-2 (COX-2) inhibitors. Among these compounds, compound 2-(3-(3,4-dimethylphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (5a) displayed the most potent COX-2 inhibitory activity with IC50 of 0.5 μM, but weak to COX-1. Docking simulation was performed to position compound 5a into the COX-2 active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity and low toxicity would be a potential and selective anti-cyclooxygenase-2 agent.  相似文献   

17.
AimDesign and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim.Materials & methodsAll the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity.ResultsCompound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIβ inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.  相似文献   

18.
In our effort to explore the potential of ACC1-selective inhibitor as in vivo probe molecule, a series of 1,3-benzoxazole derivatives was synthesized. Previously, we reported a series of novel bicyclic and monocyclic ACC1-selective inhibitors. Among them, compound 1a exhibited highly potent cellular activity (acetate uptake IC50 = 0.76 nM) as well as promising in vivo PD efficacy. However, compound 1a caused severe body weight reduction in repeated dose administration in the mouse model. Since 1a showed potent inhibitory activity against mouse ACC1 as well as strong inhibition of mouse ACC2, we further examined a series of 1a analogues in order to reduce undesirable body weight change. The replacement of acetamide moiety with ureido moiety dramatically improved selectivity of mouse ACC1 against ACC2. In addition, analogue 1b displayed favorable bioavailability in mouse cassette dosing PK study, hence in vivo PD studies were also carried out. Oral administration of 1b significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at doses of more than 30 mg/kg. Furthermore, compound 1b showed significant antitumor efficacy in 786-O xenograft mice at an oral dose of 30 mg/kg (T/C = 0.5%). Accordingly, our novel potent ACC1-selective inhibitor represents a set of useful orally-available research tools, as well as potential therapeutic agents particularly in terms of new cancer therapies.  相似文献   

19.
We report herein the design and synthesis of novel 1-[3-(dimethylamino)propyl]indolin-2-one derivatives based on the structural features of Sunitinib, a known multitargeted receptor tyrosine kinase inhibitor, and TMP-20, a previously discovered compound with good antitumor activity in our lab. These newly synthesized derivatives were evaluated for in vitro activity against five human cancer cell lines and VEGF/bFGF-stimulated HUVECs. Results revealed that all of the target compounds 1a-p show potent antitumor activity, compounds 1e-h (IC50’s: 0.45-5.08 μM) are more active than Sunitinib (IC50’s: 1.35-6.61 μM), and the most active compound 1h (IC50: 0.47-3.11 μM) is 2.1-4.6-fold more potent than Sunitinib against all five cancer cell lines. In addition, like Sunitinib, 1a-p have higher selectivity on VEGF-stimulated HUVEC other than bFGF-stimulated HUVEC.  相似文献   

20.
HDAC inhibitors enable histones to maintain a high degree of acetylation. The resulting looser state of chromatin DNA may increase the accessibility of DNA drug targets and consequently improve the efficiency of anticancer drugs targeting DNA, such as Topo II inhibitors. A novel class of nucleoside-SAHA derivatives has been designed and synthesized based on the synergistic antitumor effects of topoisomerase II and histone deacetylase inhibitors. Their inhibitory activities toward histone deacetylases and Topo II, and their cytotoxicities in cancer cell lines, were evaluated. Among the synthesized hybrid compounds, compound 16b showed the potent HDAC inhibitory activity at a low nanomolar level and exhibited antiproliferative activity toward cancer cell lines including MCF-7 (breast), HCT-116 (colon), and DU-145 (prostate) cancer cells at a low micromolar level. Moreover, compound 16a showed HDAC6-selectivity 20-fold over HDAC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号