首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
【目的】随着杀虫剂阿维菌素的广泛应用,靶标生物对其抗性问题日益严重。以往的研究显示,细胞膜转运蛋白P糖蛋白可能与抗药性有关。但在昆虫对阿维菌素的抗性研究中,由于目前市场上缺少专门针对昆虫的商业化抗体,使得这一研究受限。为此,本研究尝试应用其他物种的抗体开展P糖蛋白的检测。【方法】以果蝇为测试昆虫,以阿维菌素作为测试药物,采用免疫印迹方法用鼠抗人P糖蛋白单克隆抗体检测阿维菌素敏感品系与阿维菌素抗性品系果蝇中的P糖蛋白的表达水平。【结果】检测出果蝇体内P糖蛋白的特异性表达,且无明显非特异性条带;与敏感品系果蝇相比,阿维菌素抗性品系果蝇P糖蛋白的表达水平明显升高。【结论】用针对人及其他脊椎动物的P糖蛋白单克隆抗体检测果蝇P糖蛋白的表达可行,且果蝇对阿维菌素的抗性可能与P糖蛋白的表达升高有关。  相似文献   

2.
Abamectin resistance was selected in the vegetable leafminer, Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) under laboratory conditions, and cross‐resistance patterns and possible resistance mechanisms in the abamectin‐resistant strains (AL‐R, AF‐R) were investigated. Compared with the susceptible strain (SS), strain AL‐R displayed 39‐fold resistance to abamectin after 20 selection cycles during 25 generations, and strain AF‐R exhibited 59‐fold resistance to abamectin after 16 selection cycles during 22 generations. No cross‐resistance to cyromazine was found in both abamectin‐resistant strains. However, we failed to select for cyromazine resistance in L. sativae under laboratory conditions by conducting 17 selection cycles during 22 generations. However, moderate levels of cross‐resistance to abamectin (6–9 fold) were observed in strains which received cyromazine treatments. Biochemical analysis showed that glutathione S‐transferase (GST) activity in both abamectin‐resistant strains (AL‐R, AF‐R) was significantly higher than in the susceptible strain (SS), suggesting metabolically driven resistance to abamectinin L. sativae. Recommendations of mixtures or rotation of cyromazine and abamectin should be considered carefully, as consecutive cyromazine treatments may select for low‐level cross‐resistance to abamectin.  相似文献   

3.
The populations of migrated small brown planthoppers (SBPHs) collected in Korea were reported to have higher insecticide resistance and percentages of viruliferous individuals than the populations of overwintering SBPHs. Therefore, the migrated SBPHs might survive after insecticide treatments and cause severe damage to rice plants. In this study, the changes in the biochemical properties of resistant SBPHs with temperature changes were investigated. The activities of detoxifying enzymes known to be involved in insecticide resistance showed no correlation with temperature, but the resistant strains had consistently higher detoxifying enzyme activities than the susceptible strains. Interestingly, the amount of reactive oxygen species (ROS) increased with temperature in all strains.Chlorantraniliprole-resistant strains of Drosophila melanogaster were examined to investigate whether the phenomena observed in the resistant SBPHs were conserved in other insects with resistance to an insecticide with different modes of action. Similar to the resistant SBPHs, the resistant Drosophila also exhibited increased amounts of ROS and detoxifying enzyme activity compared to the control Drosophila. Also in the resistant Drosophila, only the ROS showed a temperature-dependent increase.Taken together, in addition to the involvement of increased activities of detoxifying enzymes, the resistant insects also had a temperature-dependent significant increase in ROS. Thus, the development of tools to induce ROS toxicity could lead to the development of new control methods to eliminate resistant insect strains.  相似文献   

4.
5.
Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most destructive pests in Brassicaceae crops, such as Chinese cabbage (Brassica rapa L.). It is rapidly developing resistance to abamectin, the dominant insecticide utilized in controlling P. xylostella in China and other southeastern Asian countries. The target of abamectin, the alpha subunit of glutamate‐gated chloride channel (GluClα), is thought to be involved in the development of abamectin resistance in nematodes and insects. This study investigated variants of GluClα in both abamectin‐susceptible and resistant strains of P. xylostella. A comparison of the PxGluClα sequences revealed three variants, including a 63‐bp substitution, a 36‐bp deletion, and a 65‐bp insertion. The frequency of the 36‐bp deletion was much higher in the abamectin‐resistant strain compared to the susceptible strain, whereas the 63‐bp substitution and 65‐bp insertion showed no significant difference between the resistant and susceptible strains. The in vitro expression of PxGluClα (with or without the 36‐bp deletion) in Xenopus laevis (Daudin) oocytes indicated that PxGluClα with the 36‐bp deletion was less sensitive to both glutamate and abamectin compared to the wild‐type PxGluClα. These findings suggest that the variant 36‐bp deletion in PxGluClα may confer abamectin resistance in P. xylostella after continuous abamectin selection, providing new insights into the management of this pest and contributing to the development of new reagents for pest control.  相似文献   

6.
P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells.  相似文献   

7.
Assays of five commercial insecticides applied as residual sprays at label rates to plywood indicated the most toxic insecticide overall for pteromalid parasitoids of house flies, Musca domestica L., was Atroban (permethrin), followed by Ciodrin (crotoxyphos), Rabon (tetrachlorvinphos), Ectrin (fenvalerate), and Cygon (dimethoate). Insecticide-susceptible house flies were susceptible to all five insecticides (mortality, 62-100%). Flies that were recently colonized from populations on dairy farms in New York were susceptible only to Rabon. Urolepis rufipes (Ashmead) was the most susceptible parasitoid species overall to these insecticides, followed by Muscidifurax raptor Girault & Sanders, Nasonia vitripennis Walker, Pachycrepoideus vindemmiae (Rondani), and Spalangia cameroni Perkins. Compared with susceptible flies, newly colonized flies showed moderate resistance to avermectin B1a (abamectin). Abamectin was more toxic to all of the parasitoids except N. vitripennis and S. cameroni than to newly colonized house flies when exposed for 90 min to plywood boards treated with 0.001-0.1% abamectin. Space sprays with Vapona (dichlorvos) killed all of the parasitoids and susceptible flies and 64% of the newly colonized flies when insects were placed directly in the path of the spray; mortality was substantially lower among flies and parasitoids protected under 5 cm of wheat straw. Space sprays with Pyrenone (pyrethrins) killed greater than 86% of all insects exposed to the spray path except for the newly colonized flies (1% mortality); mortality of insects protected under straw was low (less than 12%) except for S. cameroni (76%). Because responses of the five parasitoids to the different insecticides varied considerably, general conclusions about parasitoid susceptibility to active ingredients, insecticide class, or method of application were not possible.  相似文献   

8.
An abamectin-resistant strain of Tetranychus cinnabarinus (Boisduval) (Rf = 25.3) was selected in laboratory. We compared the γ-aminobutyric acid (GABA) content in abamectin-susceptible T. cinnabarinus individuals with that in resistant individuals and investigated its relationship to abamectin resistance. High performance liquid chromatography (HPLC) was used to ascertain GABA content in abamectin-susceptible (SS) and resistant (AR) strains of T. cinnabarinus. The results indicate that GABA content in the AR was significantly higher than that in the SS (1.39-fold). AR individuals treated with a sublethal dose of abamectin did not show significant differences in GABA levels compared with AR individuals that were not treated with abamectin. However in the SS, abamectin treated individuals had a significantly higher GABA content than those that were untreated (1.52-fold). Individuals in the SS that survived from selection with LC95 of abamectin (SS-AR) showed significantly higher GABA levels compared to SS (1.41-fold). Similarly, progenies of the SS-AR parental generation (SS-ARF1) also showed increased GABA levels (1.51-fold) compared to SS. In addition, behavioral observations have shown that all individuals from the AR, SS-AR and SS-ARF1, which had more GABA content than the SS, demonstrated a significant decrease in crawling speed compared with SS individuals. This observation is consistent with excessive GABA levels had inhibitory effect on the central nervous system. Thus, we postulate that increasing GABA content in T. cinnabarinus is associated with resistance against abamectin.  相似文献   

9.
Moth larvae (Helicoverpa armigera Hübner) collected from field crops were tested for resistance to cypermethrin, fenvalerate, endosulfan, monocrotophos and quinolphos. Larvae were treated with a dose of the pesticide that would kill 99% of the susceptible insects. The percent survival of the resistant strains was determined. Highest seasonal average percentage survival was recorded by fenvalerate (65.0%) followed by cypermethrin (62.4%). Acetylcholinesterase of resistant larvae was less sensitive to monocrotophos and methyl paraoxon. Resistant larvae showed higher activities of esterases, phosphatases and methyl paraoxon hydrolase compared with susceptible larvae. The presence of high activity of esterases was attributed to appearance of extra bands of esterases in native PAGE. The presence of P-glycoprotein expression was detected in resistant larvae using P-gp antibodies; this was not detected in the susceptible larvae. Our results indicate that the high level of resistance detected in the field pests could be because of a combined effect of decreased sensitivity to AChE, higher levels of esterases, phosphatases and the expression of P-gp.  相似文献   

10.
《Journal of Asia》2007,10(2):165-170
A field colony of Tetranychus urticae (Koch) resistant to dicofol was selected with dicofol successively for 20 generations to produce the DR-20 strain. Resistance and multiple resistance levels of the DR-20 strain to 15 acaricides were determined using a spray bioassay. The DR-20 strain was extremely resistant to dicofol [resistance ratio (RR), 465]. The strain showed extremely strong resistance to acrinathrin (RR, 373) and benzoximate (RR, 197) and strong resistance to bromopropylate (RR, 136), fenbutatin oxide (RR, 65), fenpropathrin (RR, 70), fenpyroximate (RR, 68), and pyridaben (RR, 63). A RR of 11–29 was observed with abamectin, fenazaquin, milbemectin, propagite, and tebufenpyrad. The DR-20 strain exhibited low levels of resistance (RR<3) to azocyclotin and chlorfenapyr. In comparative assays with detoxifying enzymes, the DR-20 strain showed 4.7-fold higher activity in p-nitroanisole-O-demethylation and 1.6-fold higher activities in both α- and β-naphthyl acetate hydrolysis. Synergist experiments with different metabolic inhibitors revealed that piperonyl butoxide, iprobenfos, triphenyl phosphate, and 4, 4-dichloro-α-methyl benzhydrol had little or no synergistic activity in the susceptible and DR-20 strains. These results suggest that employment of certain acaricides with little multiple resistance will be useful for the management of dicofol resistance in the field.  相似文献   

11.
Wolbachia mediates antiviral protection in insect hosts and is being developed as a potential biocontrol agent to reduce the spread of insect-vectored viruses. Definition of the molecular mechanism that generates protection is important for understanding the tripartite interaction between host insect, Wolbachia, and virus. Elevated oxidative stress was previously reported for a mosquito line experimentally infected with Wolbachia, suggesting that oxidative stress is important for Wolbachia-mediated antiviral protection. However, Wolbachia experimentally introduced into mosquitoes impacts a range of host fitness traits, some of which are unrelated to antiviral protection. To explore whether elevated oxidative stress is associated with antiviral protection in Wolbachia-infected insects, we analyzed oxidative stress of five Wolbachia-infected Drosophila lines. In flies infected with protective Wolbachia strains, hydrogen peroxide concentrations were 1.25- to 2-fold higher than those in paired fly lines cured of Wolbachia infection. In contrast, there was no difference in the hydrogen peroxide concentrations in flies infected with nonprotective Wolbachia strains compared to flies cured of Wolbachia infection. Using a Drosophila mutant that produces increased levels of hydrogen peroxide, we investigated whether flies with high levels of endogenous reactive oxygen species had altered responses to virus infection and found that flies with high levels of endogenous hydrogen peroxide were less susceptible to virus-induced mortality. Taken together, these results suggest that elevated oxidative stress correlates with Wolbachia-mediated antiviral protection in natural Drosophila hosts.  相似文献   

12.
Based on the confirmation of asymmetrical cross-resistance between abamectin and tebufenozide in Plutella xylostella, the present work proved that the cytochrome P450 monooxygenase plays a decisive role in cross-resistance, and the expression of various cytochrome P450 (CYP450) genes in different strains was surveyed to elucidate the molecular basis of the underlying mechanisms. Enzyme analysis showed the activity of cytochrome P450 monooxygenase was notable enhanced in the strains resistant to both tebufenozide (3.07-fold) and abamectin (3.37-fold), suggesting that the enhancement of cytochrome P450 monooxygenase is the main detoxification mechanism responsible for the cross-resistance. CYP4M7 (64.58-fold) and CYP6K1 (41.97-fold) had extremely high expression levels in the Teb-R strain, selected using tebufenozide, which was highly resistant to tebufenozide (RR 185.5) and moderately cross-resistant to abamectin (RR 41.0). When this strain was subjected to further selection using abamectin, the resultant Aba-R strain showed a higher expression of CYP6K1 (60.32-fold). However, the expression of CYP4M7 was reduced (10.62-fold). Correspondingly, the Aba-R strain became more resistant to abamectin (RR 593.8) and less resistant to tebufenozide (RR 28.0). Therefore, we concluded that the over expression of CYP4M7 was the main cause for tebufenozide resistance, and that CYP6K1 mainly conferred abamectin resistance. The asymmetrical cross-resistance occurred because tebufenozide selection not only enhanced the expression of CYP4M7, but also that of CYP6K1. This is the first report on the molecular mechanism of asymmetrical cross-resistance between insecticides.  相似文献   

13.
Processes affecting the toxicity of diazinon to a susceptible and a resistant strain of houseflies were examined. More evidence was obtained to show that slower penetration of diazinon through the integument of resistant flies is a cause of resistance. Small amounts of two decomposition products were found in both strains. The decomposition mechanisms, in these strains were differently distributed and, although detoxication of diazinon in the two strains is quantitatively similar and small, it may contribute to resistance. Traces of diazoxon were detected when diazinon was incubated with tissue extracts of either strain. Tissue extracts of resistant, but not of susceptible, flies decomposed significant amounts of diazinon in 1 hr. and the ability to decompose diazoxon seems to be an important cause of resistance. Tissues of both strains sorbed diazinon from aqueous solution similarly; the quantities sorbed were large and suggest that sorption may increase the amount of poison needed inside the insects to kill, by between five and forty times.  相似文献   

14.
Abstract  In field control of insects with insecticides, insects could develop different degrees of resistance. When resistance data were reviewed more extensively, it was found that detoxication alone cannot explain very high resistance of house flies to OC1 (organochlorine) insecticides. As a group, flies can develop much higher resistance to OC1 than to OP (organophosphorus) insecticides. although OPs are generally less stable in insects. With the consideration of the dynamics of insect toxicology. one can readily realize the importance of penetration. Based on the rates of penetration and detoxication. slow penetration is a limiting factor for detoxication. To further explain the observed results on the control of S (susceptible) 'and R (resistant) insects, several correlation curves were plotted. on the relationship between physical and biological factors. These relationships not only indicate approximate degrees of resistance of flies to OPs and OCls, but also help select new toxicants. For example, fast speed of action index of insecticides can produce lower resistance, and the analysis of the joint action of insecticides helps evaluate the types (same or different) of mode of action for controlling resistant insects.  相似文献   

15.
Three populations of the leafminer, Liriomyza trifolii (Burgess), were collected from commercial ornamental production greenhouses in the United States and tested for susceptibility to three commercial insecticides. A leaf dip bioassay of leaves containing young (1-2-d-old) larvae was used. Based on larval mortality and compared with a susceptible laboratory reference colony, the three strains varied in spectrum and level of resistance to the insecticides. CA-1, collected from Gerbera daisy, was moderately resistant to cyromazine (18.1-fold) and abamectin (22.0-fold), but highly resistant to spinosad (> 188-fold). CA-2, collected from chrysanthemums, was not resistant to abamectin, had a low level of resistance to cyromazine (8.2-fold), but was extremely resistant to spinosad (1,192-fold). GA-1, collected from chrysanthemums, had very low levels of resistance to cyromazine (5.4-fold) and spinosad (1.9-fold) but was moderately resistant to abamectin (30.6-fold). When reared in the absence of insecticide selection pressure, all three strains reverted to approximately the level of the reference strain. The CA-1 strain reverted in nine generations to cyromazine; however, the lowest levels of abamectin and spinosad resistance reverted to was 3.1-fold at F8 and 3.2 at the F10, respectively. The CA-2 strain reverted in five generations to both cyromazine and spinosad. GA-1 reverted in five generations to abamectin. Based on the results, resistance to these three insecticides was unstable. Additionally, there was no cross-resistance among these three insecticides.  相似文献   

16.
昆虫抗药性和昆虫毒理动力学(英文)   总被引:1,自引:0,他引:1  
不断地使用一种杀虫药剂防治昆虫,会导致昆虫产生抗药性。对昆虫抗药性资料进行广泛综述时,发现了仅单独的解毒作用不能被解释为家蝇对有机氯杀虫药剂产生高抗性原因。作为一个基因。家蝇可以对有机氯产生比对有机磷杀虫剂更高的抗药性,尽管有机磷杀虫剂一般在虫体内是不太稳定的。考虑到昆虫毒理的动力学,杀虫药剂的穿透作用更显示出其实际的重要性。根据穿透和解毒的速率,慢的穿透作用是解毒作用的一个限制因子。防治敏感和抗性昆虫的观察结果,可以划出物理和生物因子之间关系的几种相关曲线图解。这些相关性不仅能说明家蝇对有机磷和有机氯杀虫剂的抗性程度,而且也助于选择出新的杀虫毒剂。  相似文献   

17.
We evaluated effects of the insect growth regulator pyriproxyfen on Bemisia tabaci (Gennadius) (B biotype) (Hemiptera: Aleyrodidae) males and females in laboratory bioassays. Insects were treated with pyriproxyfen as either eggs or nymphs. In all tests, the LC50 for a laboratory-selected resistant strain was at least 620 times greater than for an unselected susceptible strain. When insects were treated as eggs, survival did not differ between males and females of either strain. When insects were treated as nymphs, survival did not differ between susceptible males and susceptible females, but resistant males had higher mortality than resistant females. The dominance of resistance decreased as pyriproxyfen concentration increased. Resistance was partially or completely dominant at the lowest concentration tested and completely recessive at the highest concentration tested. Hybrid female progeny from reciprocal crosses between the susceptible and resistant strains responded alike in bioassays; thus, maternal effects were not evident. Rapid evolution of resistance to pyriproxyfen could occur if individuals in field populations had resistance with traits similar to those of the laboratory-selected strain examined here.  相似文献   

18.
Specific resistance to malathion in a strain of Tribolium castaneum is due to a 44-fold increase in malathion carboxylesterase (MCE) activity relative to a susceptible strain, whereas non-specific esterase levels are slightly lower. Unlike the overproduced esterase of some mosquito and aphid species, MCE in Tribolium castaneum accounts for only a small fraction (0.033-0.045%) of the total extractable protein respectively in resistant and susceptible strains. The enzyme was purified to apparent homogeneity from these two strains and has a similar molecular weight of 62,000. However, preparative isoelectricfocusing indicated that resistant insects possess one MCE with pI of 7.3, while susceptible insects possess a MCE with a pI of 6.6. Purified MCE from both populations had different K(m) and V(m) values for hydrolysis of malathion as well as for alpha-naphthyl acetate. The kinetic analysis suggests that MCE of resistant insects hydrolyses malathion faster than the purified carboxylesterase from susceptible beetles and that this enzyme has greater affinity for malathion than for naphthyl esters. Malathion-specific resistance is due to the presence of a qualitatively different esterase in the resistant strain.  相似文献   

19.
王殿轩  原锴  高希武 《昆虫知识》2010,47(2):275-280
本文比较测定了赤拟谷盗Tribolium castaneum(Herbst)的磷化氢抗性(Rf=327)和敏感品系害虫的羧酸酯酶活性,研究了该害虫同一品系不同个体间羧酸酯酶的活性差异,比较了两品系害虫在系列磷化氢浓度下熏蒸24h和6.94×10-2mg/L磷化氢浓度下熏蒸不同时间的羧酸酯酶活性。主要结果为:未熏蒸的抗性害虫幼虫和蛹体内的羧酸酯酶活性分别高于敏感品系的1.37和1.16倍;敏感和抗性害虫同品系内不同个体间羧酸酯酶活性分布频率都存在明显差异,抗性害虫中酶活性大的个体数量占的比例较大;磷化氢浓度分别为0.69×10-2、2.78×10-2、5.56×10-2、8.33×10-2和11.11×10-2mg/L时都可导致敏感害虫羧酸酯酶的活性降低,但活性受抑制的程度不因浓度高低呈相应的增减。浓度分别为5.56×10-2、11.11×10-2、13.89×10-2、20.83×10-2和27.78×10-2mg/L的熏蒸中抗性害虫体内酶活性增加,且活性增高的程度与浓度增减也不呈对应变化。在6.94×10-2mg/L磷化氢浓度下熏蒸不同时间的结果中,敏感害虫的酶活性随时间延长而下降,抗性害虫的活性则随时间延长而增大。研究表明赤拟谷盗对磷化氢的抗性可能与羧酸酯酶的活性增加有关。  相似文献   

20.
The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in ‘diabetic’ flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin-signaling pathways in Drosophila, demonstrating the utility of TIRFM of tagged sugar transporters to monitor signaling pathways in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号