首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The deactivation mechanisms of the triplet excited state hypericin (HYP) by β-carotene (CAR) were studied employing quantum chemical calculations in the present study. The results suggest that CAR may deactivate the triplet excited state HYP through the following two pathways on thermodynamic grounds: (1) direct energy transfer from the triplet excited state HYP to CAR; (2) electron transfer from the triplet excited state CAR, which was formed through direct energy transfer pathway, to the triplet excited state HYP.  相似文献   

2.
Experimental and theoretical studies indicate that water molecules between redox partners can significantly affect their electron-transfer and possibly also the triplet–triplet energy transfer (TTET) properties when in the vicinity of chromophores. In the present work, the interaction of an intervening water molecule with the peridinin triplet state in the peridinin–chlorophyll a–protein (PCP) from Amphidinium carterae is studied by using orientation selective 2H electron spin echo envelope modulation (ESEEM) spectroscopy, in conjunction with quantum mechanical calculations. This water molecule is located at the interface between the chlorophyll and peridinin pigments involved in the photoprotection mechanism (Chl601(602)–Per614(624), for nomenclature see reference [1]), based on TTET. The characteristic deuterium modulation pattern is observed in the electron spin-echo envelopes for the PCP complex exchanged against 2H2O. Simulations of the time- and frequency-domain two-pulse and three-pulse ESEEM require two types of coupled 2H. The more strongly coupled 2H has an isotropic coupling constant (aiso) of − 0.4 MHz. This Fermi contact contribution for one of the two water protons and the precise geometry of the water molecule at the interface between the chlorophyll and peridinin pigments, resulting from the analysis, provide experimental evidence for direct involvement of this structured water molecule in the mechanism of TTET. The PCP antenna, characterised by a unity efficiency of the process, represents a model for future investigations on protein- and solvent-mediated TTET in the field of natural/artificial photosynthesis.  相似文献   

3.
4.
Pierre Setif  Guy Hervo  Paul Mathis 《BBA》1981,638(2):257-267
Absorption changes induced in chlorophyll protein (CP 1) particles by short laser flashes have been analyzed in order to decide whether a state lasting for a few microseconds at 21°C or 800 μs at 10 K corresponds to the biradical P-700+ ... A1 (A1 being a chlorophyll a) or to a triplet state produced in a submicrosecond recombination of the preceding state. At 21°C the spectrum of the flash-induced ΔA (720–870 nm) presents a flat-topped band from 740 to 820 nm, clearly different from that of P-700+. A saturation curve (ΔA vs. laser energy), obtained with a 2 or 10 ns laser pulse, indicates that ΔA saturates at a value 2- or 3-times smaller than that expected on the basis of the chemical oxidation of P-700. At 21°C the size of flash-induced ΔA is slightly decreased (5–15%) when the sample is subjected to a 400 G magnetic field. The kinetics of decay are not affected; they are not affected either by the oxygen concentration. At 10 K the spectrum of the flash-induced ΔA has been measured between 650 and 1700 nm. Between 650 and 720 nm, the spectrum presents only one major negative peak at 702 nm; it is quite different from that due to the chemical oxidation of P-700 (which has additional peaks at 688 and 677 nm). Between 720 and 870 nm, the spectrum is identical to that obtained at 21°C. Above 870 nm, the spectrum includes a broad band around 1250 nm, which is absent in P-700+. A saturation curve leads to a maximum ΔA greater than that at 21°C and which is also greater with a 1 μs dye laser flash than with a 10 ns ruby laser flash. An analysis of the spectral data indicates that these do not fit correctly with the hypothesis of a contribution of P-700+ and of a chlorophyll a anion radical. They fit more closely with the hypothesis of a triplet state of P-700, a hypothesis which is discussed in relation to other experimental data.  相似文献   

5.
6.
A.J. Hoff  J.H. Van Der Waals 《BBA》1976,423(3):615-620
Microwave induced transitions in zero magnetic field have been observed in the photoinduced triplet of chloroplasts treated with dithionite by monitoring changes in the intensity of the 735 nm fluorescence band at 2°K. Similar results were obtained with chloroplasts treated with hydroxylamine plus 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The zero field parameters are D = 0.02794 ± 0.00007 cm?1, E = 0.00382 ± 0.00007 cm?1, i.e. equal to those of monomeric chlorophyll a to within the experimental error. The photoinduced triplet appears to be linked to Photosystem II. This indicates that the low temperature 735 nm fluorescence band of chloroplasts is at least partly due to Photosystem II.  相似文献   

7.
8.
9.
Density functional theory calculations were carried out to investigate the formation mechanism of the thymine-thymine (6–4) dimer ((6–4)TT), which is one of the main DNA lesions induced by ultraviolet radiation and is closely related to skin cancers. The DNA backbone was found to have nonnegligible effects on the triplet reaction pathway, particularly the reaction steps involving substantial base rotations. The mechanism for the isomerization from (6–4)TT to its Dewar valence isomer (DewarTT) was also explored, confirming the necessity of absorbing a second photon. In addition, the solvation effects were examined and showed considerable influence on the potential energy surface.
Graphical Abstract DFT calculations on the influence of DNA backbone on the mechanism of UV-induced thymine-thymine (6–4) dimer formation.
  相似文献   

10.
Because alignment of the amino acid sequences of chick skin collagen α2-CB3 (1) with the relevant portion of chick skin collagen α1-CB7 (2) suggested that a Gly-X-Y triplet may have been missed in the latter, the peptide TM-2, produced by tryptic digestion of maleylated α1-CB7, was reinvestigated. Cleavage by trypsin at the unblocked lysine at position 18, and isolation of the resulting COOH-terminal peptide, showed this to be a 15-residue peptide containing a previously unrecognized Gly-Pro-Hyp triplet. Sequencing of the peptide showed this to occupy positions 4 through 6, or 56 through 58 of α1-CB7. The latter thus has 271 instead of 268 residues, and the α1[I] chain 1055 instead of 1052.  相似文献   

11.
《BBA》2013,1827(10):1226-1234
Although the major light harvesting complexes of diatoms, called FCPs (fucoxanthin chlorophyll a/c binding proteins), are related to the cab proteins of higher plants, the structures of these light harvesting protein complexes are much less characterized. Here, a structural/functional model for the “core” of FCP, based on the sequence homology with LHCII, in which two fucoxanthins replace the central luteins and act as quenchers of the Chl a triplet states, is proposed. Combining the information obtained by time-resolved EPR spectroscopy on the triplet states populated under illumination, with quantum mechanical calculations, we discuss the chlorophyll triplet quenching in terms of the geometry of the chlorophyll–carotenoid pairs participating to the process. The results show that local structural rearrangements occur in FCP, with respect to LHCII, in the photoprotective site.  相似文献   

12.
13.
Genetically unstable expanded CAG·CTG trinucleotide repeats are causal in a number of human disorders, including Huntington disease and myotonic dystrophy type 1. It is still widely assumed that DNA polymerase slippage during replication plays an important role in the accumulation of expansions. Nevertheless, somatic mosaicism correlates poorly with the proliferative capacity of the tissue and rates of cell turnover, suggesting that expansions can occur in the absence of replication. We monitored CAG·CTG repeat instability in transgenic mouse cells arrested by chemical or genetic manipulation of the cell cycle and generated unequivocal evidence for the continuous accumulation of repeat expansions in non-dividing cells. Importantly, the rates of expansion in non-dividing cells were at least as high as those of proliferating cells. These data are consistent with a major role for cell division-independent expansion in generating somatic mosaicism in vivo. Although expansions can accrue in non-dividing cells, we also show that cell cycle arrest is not sufficient to drive instability, implicating other factors as the key regulators of tissue-specific instability. Our data reveal that de novo expansion events are not limited to S-phase and further support a cell division-independent mutational pathway.  相似文献   

14.
Antioxidants may affect the outcome of photodynamic therapy (PDT) through the inactivation of reactive oxygen species. Their direct interaction with photosensitizers excited at the triplet state is also worthy of interest. This process is investigated by laser flash photolysis of m-THPC (meso-tetra(3-hydroxyphenyl)chlorin, Foscan) hydroalcoholic solutions added with Trolox (TrOH), a standard antioxidant or Propofol (PfOH, Diprivan(?)), a common anesthetic agent also characterized for its antioxidant properties. Transient UV-visible absorption spectra, kinetics at selected wavelengths and final spectra after extensive laser irradiation show that both compounds react with the m-THPC triplet state, (3)m-THPC, to ultimately restore the photosensitizer in its ground state. For PfOH, this process mainly appears as a single step obeying pseudo-first order kinetics. The bimolecular rate constant for the quenching of (3)m-THPC by PfOH is around 2 × 10(6) M(-1) s(-1), a value increased to some extent by the water content of the solution. A bimolecular reaction between (3)m-THPC and TrOH is observed with a rate constant of similar magnitude and dependence upon water. However, the reaction leads, at least partly, to intermediate species assigned to the TrO˙ radical and the m-THPC anion radical. Within a few ms, these species back react to yield m-THPC in its ground state. A general mechanism involving an intermediate activated complex with some charge transfer character is proposed. Depending on the redox potentials for the oxidation of the antioxidant, this complex evolves predominantly either toward the formation of radicals (TrOH) or back to the photosensitizer ground state (PfOH). Notably, the kinetics data suggest that Propofol may quench (3)m-THPC at concentrations relevant of clinical situation in PDT involving anesthesia.  相似文献   

15.
16.
17.
The primary electron donor (P) in the photosynthetic bacterial reaction center of Rhodobacter sphaeroides and Blastochloris viridis consists of a dimer of bacteriochlorophyll a and b cofactors, respectively. Its photoexcited triplet state in frozen solution has been investigated by time resolved ENDOR spectroscopy at 34 GHz. The observed ENDOR spectra for 3P865 and 3P960 are essentially the same, indicating very similar spin density distributions. Exceptions are the ethylidene groups unique to the bacteriochlorophyll b dimer in 3P960. Strikingly, the observed hyperfine coupling constants of the ethylidene groups are larger than in the monomer, which speaks for an asymmetrically delocalized wave function over both monomer halves in the dimer. The latter observation corroborates previous findings of the spin density in the radical cation states P 865 ?+ (Lendzian et al. in Biochim Biophys Acta 1183:139–160, 1993) and P 960 ?+ (Lendzian et al. in Chem Phys Lett 148:377–385, 1988). As compared to the bacteriochlorophyll monomer, the hyperfine coupling constants of the methyl groups 21 and 121 are reduced by at least a factor of two, and quantitative analysis of these couplings gives rise to a ratio of approximately 3:1 for the spin density on the halves PL:PM. Our findings are discussed in light of the large difference in photosynthetic activity of the two branches of cofactors present in the bacterial reaction center proteins.  相似文献   

18.
We have attempted to investigate the correlation between the detergent-perturbed structural integrity of the Cyt b 6 f complex from the marine green alga Bryopsis corticulans and its photo-protective properties, for which the nonionic detergents n-octyl-β-d-glucopyranoside (β-OG) and n-dodecyl-β-d-maltoside (β-DM), respectively, were used for the preparation of Cyt b 6 f, and the singlet oxygen (1O2*) production as well as the triplet excited-state chlorophyll a (3Chl a*) formation and deactivation were examined by spectroscopic means. Near-infrared luminescence of 1O2 * (~1,270 nm) on photo-irradiation was detected for the β-OG preparation where the complex is mainly in oligomeric state, but not for the β-DM one in which the complex exists in dimeric form. Under anaerobic condition, photo-excitation of Chl a in the β-DM preparation generated 3Chl a* with a lower quantum yield of ΦT ~ 0.02 and a longer lifetime of ~600 μs with respect to those as in the case of β-OG preparation, ΦT ~ 0.12 and 200–300 μs. These results prove that the enzymatically active and intact Cyt b 6 f complex on photo-excitation tends to produce little 3Chl a* or 1O2 *, which implies that the pigment–protein assembly of Cyt b 6 f complex per se is crucial for photo-protection. F. Ma and X.-B. Chen contributed equally to this work.  相似文献   

19.
The nature of the unusual cation–π interactions between cations (H+, Li+, Na+, Be2+ and Mg2+) and the electron-deficient B=B bond of the triplet state HB=BH ( $ {}^3\Sigma_g^{-} $ ) was investigated using UMP2(full) and UB3LYP methods at 6–311++G(2df,2p) and aug-cc-pVTZ levels, accompanied by a comparison with 1:1 and 2:1 σ-binding complexes between BH and the cations. The binding energies follow the order HB=BH...H+ > HB=BH...Be2+ > HB=BH...Mg2+ ? HB=BH...Li+ > HB=BH...Na+ and HB=BH (1Δg)...M+/M2+ > H2C=CH2...M+/M2+ > HC≡CH...M+/M2+ > HB=BH ( $ {}^3\Sigma_g^{-} $ )...M+/M2+. Furthermore, except for HB...H+, the σ-binding interaction energy of the 1:1 complex HB...M+/M2+ is stronger than the cation–π interaction energy of the C2H2...M+/M2+, C2H4...M+/M2+, B2H2 (1Δg)...M+/M2+ or B2H2 ( $ {}^3\Sigma_g^{-} $ )...M+/M2+ complex, and, for the 2:1 σ-binding complexes, except for HBBe2+...BH, they are less stable than the cation–π complexes of B2H2 (1Δg) or B2H2 ( $ {}^3\Sigma_g^{-} $ ). The atoms in molecules (AIM) theory was also applied to verify covalent interactions in the H+ complexes and confirm that HB=BH ( $ {}^3\Sigma_g^{-} $ ) can be a weaker π-electron donor than HB=BH (1Δg), H2C=CH2 or HC≡CH in the cation–π interaction. Analyses of natural bond orbital (NBO) and electron density shifts revealed that the origin of the cation–π interaction is mainly that many of the lost densities from the π-orbital of B=B and CC multiple bonds are shifted toward the cations.
Figure
The nature of the unusual cation–π interactions between cations (H+, Li+, Na+, Be2+ and Mg2+) and the electron-deficient B=B bond of the triplet state HB=BH ( $ {}^3\Sigma_g^{-} $ ) as investigated using UMP2(full) and UB3LYP methods at 6-311++G(2df,2p) and aug-cc-pVTZ levels  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号