首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study describes a convenient method for the synthesis of new lipoxygenase inhibitors, 4-(toluene-4-sulfonylamino)-benzoic acids from p-amino benzoic acid. Reaction of p-amino benzoic acid with p-toluenesulfonyl chloride provided thirteen N- and O-alkylation products 4a-4m in moderate to good yields. Lipoxygenase inhibition of newly formed sulfonamide derivatives was investigated and some of these compounds 4m, 4g, 4e, 4f and 4j showed good lipoxygenase inhibitory activities with IC(50) values ranged between 15.8 ± 0.57 and 91.7 ± 0.61 μmol whilst all other compounds exhibited mild anti-lipoxygenase activities with IC(50) values ranged between 139.2 ± 0.75 and 232.1 ± 0.78 μmol. N-alkylated products were more active against the enzyme than O-alkylated or both N- and O-alkylated ones. All synthesized sulfonamides were recrystallized in chloroform to give these title compounds which were characterized using FTIR, (1)H NMR, (13)C NMR, elemental analysis and single crystal X-ray diffraction techniques.  相似文献   

2.
The target ferrocene-labeled dideoxynucleotide compound 5-[N-(beta-ferrocenyl-propanoyl)3-amino-propyn-1-yl]-2',3'-dideoxyuridine 5'-triphosphate, Fc-ddUTP, was synthesized and tested with terminal deoxynucleotidyl transferase for enzymatic 3'-redox-active end-labeling of 5'-phosphorylated single-stranded oligodeoxynucleotides. Starting from readily available 5-iodouridine and 3-ferrocenylpropanoic acid, the synthetic strategy elaborated here follows a mild multistep route. Each step involves reliable methods, and all ferrocene intermediates can be easily purified. Enzymatic 3'-ferrocene end-labeling of 5'-phosphorylated oligonucleotides is remarkably efficient, and 3'-ferrocene-labeled oligonucleotides can thus be prepared in sufficient amounts for further use in surface modifications.  相似文献   

3.
The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of ~106 compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.  相似文献   

4.
Bicyclic furanopyrimidines were recently discovered by us to be potent and selective inhibitors of VZV. Related studies to investigate the role of the sugar in this activity uncovered dideoxy furanopyrimidines as inhibitors of HCMV and this led to the preparation of highly modified long alkyl chain furanopyrimidines from the N- and O-alkylation of their parent bases. Herein we describe their synthesis and subsequent biological evaluation against HCMV. O-alkylated derivatives were almost invariably found to be at least equiactive with their N-alkylated counterparts. At this point, little change in activity has been found with large variation in N- and O-substituent.  相似文献   

5.
Bicyclic furanopyrimidines were recently discovered by us to be potent and selective inhibitors of VZV. Related studies to investigate the role of the sugar in this activity uncovered dideoxy furanopyrimidines as inhibitors of HCMV and this led to the preparation of highly modified long alkyl chain furanopyrimidines from the N- and O-alkylation of their parent bases. Herein we describe their synthesis and subsequent biological evaluation against HCMV. O-alkylated derivatives were almost invariably found to be at least equiactive with their N-alkylated counterparts. At this point, little change in activity has been found with large variation in N- and O-substituent.  相似文献   

6.
The synthesis of 10 N-(fluoren-9-ylmethoxycarbonyl)glycopyranosylamine uronic acids that are amenable to solid-phase synthesis is described. The general synthetic strategy involves initial incorporation of the protected amine, followed by selective TEMPO oxidation of C-6 hydroxyl groups to give the corresponding Fmoc-protected sugar amino acids. Amine incorporation may be accomplished from aminolysis of the free sugar or from glycosyl azide reduction. The reactions can be carried out on multigram scale, providing access to unique monomer units for future incorporation into combinatorial library syntheses.  相似文献   

7.
Mitochondria isolated from 48-h germinating Vigna sinensis (L.) Savi can incorporate [3H]uridine into acid-insoluble material. The incorporation is highly sensitive to rifampicin and partially so to ethidium bromide, two specific inhibitors of template function. The inhibitory effect of rifampicin can be partly counteracted by cyclic 3′:5′-AMP but not by cyclic 3′:5′-GMP, if they are allowed to interact with the synthetic system before the treatment with rifampicin. This indicates that cyclic AMP and rifampicin compete for a common site on the RNA polymerase responsible for DNA-dependent RNA synthesis. Inhibition by ethidium bromide is unaffected by prior nucleotide interaction with the system.  相似文献   

8.
Applications of the synthetic auxin 2,4‐dichlorophenoxyacetic acid (2,4‐D) to the foliage of potato plants can reduce common scab, a tuber disease. However, in prior research effective applications at 200 mg L?1 2,4‐D resulted in phytotoxic side effects with reduced tuber yield and quality. This study showed that minimal significant threshold rates from 8.3 to 23.6 mg L?1 2,4‐D reduced disease incidence in pot trials, and from 10.8 to 41.0 mg L?1 minimised disease severity in both pot and field trials. In only one pot trial, significant phytotoxicity was found with rates of 100 mg L?1 or greater, reducing mean total tuber mass per plot and 38 mg L?1 or greater, reducing mean mass per tuber. Notably, within the field trial, a more reliable plant growth system for estimation of yield, no significant impacts were observed. Disease control was associated with decreased sensitivity of tubers to thaxtomin A, the phytotoxin produced by the common scab pathogen essential for disease induction. The amount of residual 2,4‐D in tubers at harvest varied with cultivar, Russet Burbank accumulating more 2,4‐D than Desiree. Application rates less than 100 mg L?1 resulted in levels of 2,4‐D below the Australian standard maximum residue limit. These data suggest that applications of 2,4‐D at low rates could provide a commercially suitable control strategy for common scab.  相似文献   

9.
Sensitive and reliable study of the activity of polynucleotide kinase (PNK) and its potential inhibitors is of great importance for biochemical interaction related to DNA phosphorylation as well as development of kinase-targeted drug discovery. To achieve facile and reliable detection of PNK activity, we report here a novel fluorescence method for PNK assay based on a combination of exonuclease cleavage reaction and photo-induced electron transfer (PIET) by using T4 PNK as a model target. The fluorescence of 3′-carboxyfluorescein-labeled DNA probe (FDNA) is effectively quenched by deoxyguanosines at the 5′ end of its complementary DNA (cDNA) due to an effective PIET between deoxyguanosines and fluorophore. Whereas FDNA/cDNA hybrid is phosphorylated by PNK and then immediately cleaved by lambda exonuclease (λ exo), fluorescence is greatly restored due to the break of PIET. This homogeneous PNK activity assay does not require a complex design by taking advantage of the quenching ability of deoxyguanosines, making the proposed strategy facile and cost-effective. The activity of PNK can be sensitively detected in the range of 0.005 to 10 U mL−1 with a detection limit of 2.1 × 10−3 U mL−1. Research on inhibition efficiency of different inhibitors demonstrated that it can be explored to evaluate inhibition capacity of inhibitors. The application for detection of PNK activity in complex matrix achieved satisfactory results. Therefore, this PIET strategy opens a promising avenue for studying T4 PNK activity as well as evaluating PNK inhibitors, which is of great importance for discovering kinase-targeted drugs.  相似文献   

10.
Our research activities target the use of biological methods for the evaluation of environmental quality, with particular reference to saltwater/brackish water and sediment. The choice of biological indicators must be based on reliable scientific knowledge and, possibly, on the availability of standardized procedures. In this article, we present a standardized protocol that used the marine crustacean Artemia to evaluate the toxicity of chemicals and/or of marine environmental matrices. Scientists propose that the brine shrimp (Artemia) is a suitable candidate for the development of a standard bioassay for worldwide utilization. A number of papers have been published on the toxic effects of various chemicals and toxicants on brine shrimp (Artemia). The major advantage of this crustacean for toxicity studies is the overall availability of the dry cysts; these can be immediately used in testing and difficult cultivation is not demanded1,2. Cyst-based toxicity assays are cheap, continuously available, simple and reliable and are thus an important answer to routine needs of toxicity screening, for industrial monitoring requirements or for regulatory purposes3. The proposed method involves the mortality as an endpoint. The numbers of survivors were counted and percentage of deaths were calculated. Larvae were considered dead if they did not exhibit any internal or external movement during several seconds of observation4. This procedure was standardized testing a reference substance (Sodium Dodecyl Sulfate); some results are reported in this work. This article accompanies a video that describes the performance of procedural toxicity testing, showing all the steps related to the protocol.  相似文献   

11.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

12.
While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) 13C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity) further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH) carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.  相似文献   

13.
A series of 2-[(2-pyridylmethyl)sulfinyl]benzimidazole derivatives were synthesized via a solution phase synthetic route using a reversal method of diversity introduction. Using this synthetic strategy, we obtained two key intermediates (4-A and 4-B) simultaneously, which allows us to introduce diversity points onto the benzimidazole part of the final product under reliable reaction conditions to identify potent H+/K+-ATP enzyme inhibitors. Compound 14l (IC50 = 1.6 × 10−5 M) was comparable with H+/K+-ATP enzyme inhibitor in vitro.  相似文献   

14.
15.
The macrolide antibiotic bafilomycin and the related synthetic compound SB 242784 are potent inhibitors of the vacuolar H+-ATPases (V-ATPase). It is currently believed that the site of action of these inhibitors is located on the membrane bound c-subunits of V-ATPases. To address the identification of the critical inhibitors binding domain, their specific binding to a synthetic peptide corresponding to the putative 4th transmembrane segment of the c-subunit was investigated using fluorescence resonance energy transfer (FRET), and for this purpose a specific formalism was derived. Another peptide of the corresponding domain of the c′ isoform, was checked for binding of bafilomycin, since it is not clear if V-ATPase inhibition can also be achieved by interaction of the inhibitor with the c′-subunit. It was concluded that bafilomycin binds to the selected peptides, whereas SB 242784 was unable to interact, and in addition for bafilomycin, its interaction with the peptides either corresponding to the c- or the c′-subunit isoforms is identical. Since the observed interactions are however much weaker as compared to the very efficient binding of both bafilomycin and SB 242784 to the whole protein, it can be concluded that assembly of all V-ATPase transmembrane segments is required for an efficient interaction.  相似文献   

16.
A series of the novel acyclic unsaturated pyrimidine (112) and adenine (13) nucleoside analogues bearing conformationally restricted (Z)-2′-butenyl moiety were synthesized and evaluated for their antiviral and cytostatic activity potency against malignant tumor cell lines and normal human fibroblast (WI38). The N-1 and/or N-3 acyclic side chain substitution in pyrimidine ring in N-3 substituted 5-trifluoromethyluracil derivative (11), N-1, N-3 disubstituted 5-fluorouracil derivative (12) and adenine derivative (13) was deduced from their 1H and 13C NMR spectra and confirmed by single crystal X-ray structure analysis. The X-ray crystal structure analysis 1113 revealed also supramolecular self-assemblies, in which infinite chains or dimers built two- and three-dimensional networks. The results of the in vitro cytostatic activity evaluations of 1–13 indicate that the majority of the compounds tested exhibited a non-specific and moderate antiproliferative effect at the highest concentration (100 μM). Of all evaluated compounds on the cell lines tested only the N-1 4″-fluoro-substituted-benzamide uracil derivative (7) showed rather marked and selective inhibitory activity against the growth of MCF-7 cells at a concentration of 2.7 μM and no cytotoxic effect on normal fibroblasts WI38. This compound can be therefore considered as a potential antitumor lead compound for further synthetic structure modification.  相似文献   

17.
Maintenance of metabolic redox homeostasis is essential to all life and is a key factor in many biotechnological processes. Changes in the redox state of NAD affect metabolic fluxes, mediate regulation and signal transduction, and thus determine growth and productivity. Here we establish an in vivo monitoring system for the dynamics of the cytosolic NADH/NAD+ ratio in the basidiomycete Ustilago maydis using the ratiometric fluorescent sensor protein Peredox-mCherry. Metabolic redox dynamics were determined in the cytosol of living cells with high time resolution under biotechnologically relevant conditions, i.e. with high cell density and high aeration. Analytical boundary conditions for reliable analysis were determined, and perturbations in C-, N- or O- availability had marked impact on the cytosolic NADH/NAD+ ratio. NAD redox dynamics could be manipulated in lines inducibly expressing a water-forming NADH oxidase as a synthetic reductant sink. The establishment of Peredox-mCherry in U. maydis and the analysis of NAD redox dynamics provides a versatile methodology for the in vivo investigation of cellular metabolism, and contributes fundamental knowledge for rational design and optimization of biocatalysts.  相似文献   

18.
It was attempted to examine whether or not isotope labeling may possibly affect an oligonuclear metal-thiolate cluster. Cu-metallothioneins are known to contain strongly distorted Cu-thiolate clusters and seemed appropriate for this study. Thus, yeast 13C-and 15N-Cu-metallothioneins were isolated from Saccharomyces cerevisiae cells grown in a minimal synthetic medium and some physicochemical parameters were compared with those of the unlabeled Cu-thionein. Surprisingly, the 13C- and 15N- labeled Cu7-thioneins are distinctly different in their characteristic spectroscopic properties. The electronic absorption was blue-shifted while both luminescence emission and chiroptic features display a distinct red shift with markedly diminished intensities, respectively. Contrary to common knowledge that isotope labeling does not affect the molecular architecture of a protein the present results support such a phenomenon. Attributable to the fortunate happenstance that there is a strongly distorted structural situation in the oligonuclear Cu-thiolate cluster this isotope effect came to light.  相似文献   

19.
Correlatively inhibited pea shoots (Pisum sativum L.) did not transport apically applied 14C-labelled indol-3yl-acetic acid ([14C]IAA), and polar IAA transport did not occur in internodal segments cut from these shoots. Polar transport in shoots and segments recovered within 24 h of removing the dominant shoot apex. Decapitation of growing shoots also resulted in the loss of polar transport in segments from internodes subtending the apex. This loss was prevented by apical applications of unlabelled IAA, or by low temperatures (approx. 2° C) after decapitation. Rates of net uptake of [14C]IAA by 2-mm segments cut from subordinate or decapitated shoots were the same as those in segments cut from dominant or growing shoots. In both cases net uptake was stimulated to the same extent by competing unlabelled IAA and by N-1-naphthylphthalamic acid. Uptake of the pH probe [14C]-5,5-dimethyloxazolidine-2,4-dione from unbuffered solutions was the same in segments from both types of shoot. Patterns of [14C]IAA metabolism in shoots in which polar transport had ceased were the same as those in shoots capable of polar transport. The reversible loss of polar IAA transport in these systems, therefore, was not the result of loss or inactivation of specific IAA efflux carriers, loss of ability of cells to maintain transmembrane pH gradients, or the result of a change in IAA metabolism. Furthermore, in tissues incapable of polar transport, no evidence was found for the occurrence of inhibitors of IAA uptake or efflux. Evidence is cited to support the possibility that the reversible loss of polar auxin transport is the result of a gradual randomization of effluxcarrier distribution in the plasma membrane following withdrawal of an apical auxin supply and that the recovery of polar transport involves reestablishment of effluxcarrier asymmetry under the influence of vectorial gradients in auxin concentration.Abbreviations DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid This work was supported by grant no. GR/D/08760 from the U.K. Science and Engineering Research Council. We thank Mrs. R.P. Bell for technical assistance.  相似文献   

20.
A general problem that exists in the assembly of large and organized DNA structures from smaller fragments is secondary structure that blocks or prevents it. For example, it is common to assemble longer synthetic DNA and RNA fragments by ligation of smaller synthesized units, but blocking secondary structure can prevent the formation of the intended complex before enzymatic ligation can occur. In addition, there is a general need for protecting groups that would block reactivity of some DNA bases in a sequence, leaving others free to react or hybridize. Here we describe such a strategy. The approach involves the protecting group dimethylacetamidine (Dma), which we show to remain intact on exocyclic amines of adenine bases while other bases carrying commercially available ‘ultra mild deprotection’ protecting groups are removed by potassium carbonate in methanol. The intact Dma groups prevent unwanted hybridization at undesired sites, thus encouraging it to occur where intended, and allowing for successful ligations. The Dma group is then deprotected by treatment with ammonia in methanol. Other common amine protecting groups such as benzoyl and allyloxycarbonyl were not successful in such a strategy, at least in part because they did not prevent hybridization. We demonstrate the method in the synthesis of a circular 54mer oligonucleotide composed of nine human telomere repeats, which was not possible to assemble by conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号