首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

2.
The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.  相似文献   

3.
4.
The impact of selenium (Se) in carcinogenesis is still debatable due to inconsistent results of observational studies, recent suspicion of diabetic side effects and e.g. dual roles of glutathione peroxidases (GPx). Previously, our group introduced long-term studies on lung carcinogenesis using the jaagtsiekte sheep retrovirus (JSRV) induced ovine pulmonary adenocarcinoma (OPA) as an innovative animal model. The present report describes the results of sufficient (0.2 mg Se/kg dry weight (dw)) vs. marginal (<0.05 mg Se/kg dw) nutritional Se supply on cancer progression over a two-year period in 16 animals. Computed tomography (CT) evaluation of lung cancer progression, final pathological examination, evidence of pro-viral JSRV-DNA in lung, lymph nodes and broncho-alveolar lavage cells as well as biochemical analysis of Se, GPx1 and thioredoxin reductase (TrxR) activity in lung tissue were recorded. Additionally, immunohistochemical determination of GPx1 expression in unaffected and neoplastic lung cells was implemented.The feeding regime caused significant differences in Se concentration and GPx1 activity in lung tissue between groups, whereas TrxR activity remained unaffected. JSRV was evident in broncho-alveolar lavage cells, lung tissue and lung lymph nodes. Quarterly executed CT could not demonstrate differences in lung cancer proliferation intensity. Necropsy and histopathology substantiated CT findings. Immunohistochemical analysis of GPx1 in lung tissue suggested a coherency of GPx1 immunolabelling intensity in dependence of tumour size.It was concluded that the model proved to be suitable for long-term studies of lung cancer proliferation including the impact of modifiable nutritional factors. Proliferation of OPA was unaffected by marginal vs. sufficient nutritional Se supply.  相似文献   

5.
Sodium selenosulfate has been extensively used as a precursor of selenide ions in the preparation of nano Se-containing compounds. Its biological properties remain completely unknown. Sodium selenosulfate and sodium selenite were added to the medium of HepG2 cells and administered intraperitoneally at a dose of 0.1 mg Se/kg body weight to selenium-deficient mice, respectively. Both of the selenium compounds could increase the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) in a dose-dependent manner in cells and efficiently restore selenium retention and activities of GPx and TrxR in mice. All of the variables were in correlation with the Se supply. There was no distinction in elevating activities of GPx and TrxR between selenosulfate and selenite in vitro. After a 2-d supply of selenosulfate, the activity of GPx in the liver was 65% (p < 0.001) and Se accumulations in the liver, kidney and blood were 64%, 86%, and 65%, respectively, of those treated with selenite (allp < 0.01). With the 7-d selenosulfate supplementation, the activity of GPx in the kidney and activities of TrxR in the liver and kidney were 88%, 75%, and 78%, respectively, of those treated with selenite (allp < 0.01); Se retentions in the liver and kidney were 85% and 93%, respectively of those supplemented with selenite (bothp < 0.01). These facts indicated that selenosulfate could be absorbed and utilized in the biological system. No difference in vitro demonstrated that selenosulfate could be absorbed and generate reduced selenide as efficiently as selenite. The differences between the two compounds in vivo were the result of other factors that affected selenosulfate utilization in tissues.  相似文献   

6.
Chronic dietary administration of 3,3',4,4',5,5'-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA:retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 micrograms), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

7.
The effect of dietary selenium (Se) and vitamin E supplementation on tissue reduced glutathione (GSH) and glutathione peroxidase activity has been studied in the rat. Increasing Se intake by 0.4 ppm gave significantly higher enzyme levels in all tissues studied, an effect not influenced by vitamin E intake. Further increasing Se to 4 ppm gave higher enzyme levels in red blood cells only, while in liver was there was a significant decrease in enzyme activity probably reflecting Se hepatotoxicity. In the absence of Se supplements increasing dietary vitamin E to 100 mg/kg diet significantly increased enzyme activity but this effect was modified by simultaneous Se supplementation.Se intake had no effect on GSH levels. Rats on high vitamin E intake 500 mg/kg had a significantly higher tissue GSH level. Dietary Se had a sparing effect on vitamin E, rats supplemented with Se having significantly raised plasma vitamin E levels.These results confirm the role of selenium in glutathione peroxidase and also show that vitamin E influences the activity of the enzyme.  相似文献   

8.
The influence of dietary selenium on the mutagenic activation of 7,12-dimethylbenz[a]anthracene (DMBA) by rat liver S9 was studied using the Ames test. Rats received supplemental selenium, as sodium selenite, in the drinking water or in the diet. All rats additionally received 0, 20, 50, 100, or 500 mg Aroclor 1254 per kg body weight. Revertant counts decreased 72 and 31% at the 20- and 100-mg/kg induction levels, respectively, with S9 preparations from rats given selenium supplementation, compared to controls. No significant effects of selenium on S9 preparations was observed in rats treated with 500 mg/kg Aroclor. Preparations of S9 from rats receiving 2.5 ppm Se in their diet produced 46, 84 and 70% less revertants than controls at the 20-, 50- and 100-mg/kg induction levels. Increasing the selenium concentration in the diet to 5 ppm reduced the revertant counts by 71, 68 and 65%, at the 20-, 50- and 100-mg/kg induction level of Aroclor, respectively. Dietary selenium supplementation was shown to decrease the mutagenic activation of DMBA by liver microsomes. These studies indicate that in vivo selenium supplementation may reduce susceptibility to the action of various carcinogens.  相似文献   

9.
We investigated the effect of organic versus inorganic dietary selenium in laying hens on the productivity, selenium distribution in egg and selenium content in blood, liver and kidney. Sixty Leghorn laying hens were fed a basic diet containing 0.23mg Se/kg DM (dry matter) for 2 weeks and then were allocated randomly into three groups. Thereafter, the hens were given the same basic diet without supplementation, or with 0.51 mg Se/kg DM as sodium selenite (SS) or Se-malt (SM). During the experiment, egg rate and dietary intake were recorded, blood was sampled on days 10 and 20, and six eggs were sampled on days 8, 16 and 24 from each treatment group for Se content determination. At the end of the experiment, 10 hens from each treatment were slaughtered, and liver and kidney were sampled for the determination of Se content. The result showed that with the increase of dietary Se level, the Se content in egg, blood, liver and kidney was elevated (P < 0.05), but the hens' productivity was not affected. SS increased liver Se content more than SM (P < 0.05), while the Se content both in blood and kidney did not differ significantly between the SS and SM treatments. Se from SM and SS mainly deposited in the egg yolk. This suggests that the metabolic route of Se from SM is similar to that of Se from SS in laying hens.  相似文献   

10.
The objective of this work was to determine whether long-term selenium (Se) deficiency might affect the antioxidant capacity of rat aorta, and the activities and expressions of glutathione peroxidase (GPx) and thioredoxin reductase (TR) in rat arterial walls. Weanling male Wister rats were fed Se-deficient or Se-adequate diets for 12 months. For the Se supplementation, sodium selenite was supplemented in drinking water (1 microg Se/ml) for 1 month. The aorta isolated from these groups were used to determine activities and mRNA levels. In comparison with the control, the activity and expression of GPx, superoxide dismutase activity and the total antioxidant capacity were significantly decreased in Se-deficient rats arterial walls. Following Se supplementation, they were restored to different extents. The content of malondialdehyde was increased markedly in Se-deficient rats. There seems an inverse relationship between the dietary Se and the activity and expression of TR. A positive relationship exists between dietary Se and the antioxidant capacity of rat arterial walls. The activities and expressions of GPx and TR in arterial walls were regulated by selenium by different mechanisms. Regulation of the expression of TR was mediated by reactive oxygen species, but of GPx by selenium status. The thioredoxin system may be the major cellular redox signaling system in rat arteries, rather than the glutathione system.  相似文献   

11.
The objective of this experiment was to investigate the effects of feed supplementation with equivalent doses of selenium from sodium selenite (SS) or selenized yeast (SY) on Se deposition, selenoenzyme activity and lipid peroxidation in tissues as well as in bacterial and protozoal fractions of rumen contents in sheep. The phagocytic activity of monocytes and neutrophils in whole blood was also assessed after 3 months of dietary treatment. While animals in the control group were fed with unsupplemented basal diet (BD) containing only background Se (0.16 mg/kg DM), the diet of the other two groups (n = 6) consisted of identical BD enriched with 0.4 mg Se/kg DM either from SS or SY. Concentrations of Se in blood and tissues were found to be significantly increased in both supplemented groups. No response in Se deposition was recorded in the musculus longissimus dorsi of sheep given dietary SS. The intake of SY resulted in a significantly higher Se level in the blood, kidney medulla, skeletal muscles, heart, intestinal and ruminal mucosa than in the case of SS supplementation. No differences appeared between tissue Se contents in the liver and kidney cortex due to the source of added Se. Regardless of source, Se supplementation to feeds significantly increased the glutathione peroxidase (GPx) activity in blood and tissues except the kidney medulla and jejunal mucosa. Supplementation with SY resulted in significantly higher activity of thioredoxin reductase in the liver and ileal mucosa, and also reduced malondialdehyde content in the liver and duodenal mucosa. Dietary Se intake increased Se concentrations in the total rumen contents and bacterial and protozoal fractions. The accumulation of Se in rumen microbiota was associated with increased GPx activity. Phagocytic cell activity was enhanced by Se supplementation. Our results indicate that Se from both sources has beneficial effects on antioxidant status in sheep and can be utilized by rumen microflora.  相似文献   

12.

The aim of this study was to investigate the effect of dietary supplementation with different sources of selenium and/or organic chromium on the growth performance, digestibility, lipid profile, and mineral content of hair, liver, and fore and hind limb of growing rabbits. A total of 150 weanling New Zealand White (NZW) male rabbits were randomly allotted to six dietary treatment groups: (1) basal diet (control group), (2) basal diet + 0.6 mg sodium selenite/kg diet, (3) basal diet + 0.6 mg selenium yeast/kg diet, (4) basal diet + 0.3 mg sodium selenite/kg diet + 0.3 mg selenium yeast/kg diet, (5) basal diet + 0.6 mg chromium yeast/kg diet + 0.6 mg selenium yeast/kg diet, (6) basal diet + 0.6 mg chromium yeast/kg diet. Only the combination between inorganic and organic selenium led to significant improvement in body weight, body weight gain, and feed conversion ratio. Carcass traits were not different in all groups. Selenium (Se) and chromium (Cr) were deposited in the tissues of rabbits fed diets supplemented with Se and Cr, respectively. Blood serum in both of selenium- and chromium-supplemented groups showed declined total cholesterol, triglycerides, and low-density lipoprotein (LDL). Group supplemented with organic chromium showed higher high-density lipoprotein (HDL) than the other groups. It could be concluded that using a mixture of inorganic and organic Se has a positive effect on the growth performance of growing rabbits. Both Se and Cr have hypocholesterolemic effect. Both of Se and Cr can be deposited in the meat and other tissues of rabbits and that improves meat quality which positively reflects on human acceptance. The combination between inorganic (0.3 mg sodium selenite/kg diet) and organic selenium (0.6 mg selenium yeast/kg diet) improved growth performance traits of growing rabbits.

  相似文献   

13.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

14.
Active derivatives of vitamin A are essential in physiological processes such as cell growth, differentiation, morphogenesis and development. The biological functions of vitamin A are mediated through the retinoid acid receptors (RARs) and retinoid X receptors (RXRs). Aryl hydrocarbon receptor (AhR) agonists such as planar halogenated compounds are known to interfere with vitamin A homeostasis in both field and laboratory studies. In this study, we have investigated the molecular interactions between vitamin A and AhR signalling pathways using juvenile Atlantic salmon and agonists for both receptor pathways. Groups of juvenile salmon were treated with all-trans- and 9-cis-retinoic acid mixture (7:3 ratio) dissolved in DMSO (dimethyl sulfoxide) at 0.1, 1 and 10 mg/kg fish weight. The mixture was force fed singly or in combination with 0.1 mg 3,3',4,4'-tetrachlorobiphenyl (co-planar congener 77)/kg fish weight dissolved in DMSO. Liver samples were collected 3 days after PCB-77 exposure. A separate group exposed to combined retinoic acid (1 mg/kg for 5 days) and PCB-77, was sampled at 3, 7 and 14 days after PCB-77 exposure. Liver samples collected from all exposure groups were analyzed for gene (RARalpha, AhR2alpha, AhR2beta, CYP1A1, UGT1 and GSTpi) expression using real-time PCR and activity (7-ethoxyresorufin O-deethylase (EROD), UGT and GST) using biochemical methods with specific substrates. Our data showed that exposure to RA alone did not produce a significant increase of RARalpha mRNA levels, and the presence of PCB-77 attenuated the expression of RARalpha in RA dose- and time-specific manner. In addition, RA produced a dose-dependent increase of CYP1A1 mRNA and activity (EROD) levels without concomitant increase in AhR2 isoforms. When administered alone, PCB-77 produced increased CYP1A1, UGT1 and GSTpi mRNA and enzyme levels. The PCB-77-induced CYP1A1, UGT1 and GSTpi (mRNA and activity) levels were modulated by RA, in a parameter and dose-specific manner. In general, our data show an interaction between vitamin A and AhR signalling that may affect retinoid homeostasis in fish.  相似文献   

15.
Adequate supply of selenium (Se) is critical for synthesis of selenoproteins through selenocysteine insertion mechanism. To explore this process we investigated the expression of the cytosolic and mitochondrial isoenzymes of thioredoxin reductase (TrxR1 and TrxR2) in response to altered Se supply. Rats were fed diets containing different quantities of selenium and the levels of TrxR1 and TrxR2 protein and their corresponding mRNAs were determined in liver and kidney. Expression of the two isoenzymes was differentially affected, with TrxR1 being more sensitive to Se depletion than TrxR2 and greater changes in liver than kidney. In order to determine if the selenocysteine incorporation sequence (SECIS) element was critical in this response liver and kidney cell lines (H4 and NRK-52E) were transfected with reporter constructs in which expression of luciferase required read-through at a UGA codon and which contained either the TrxR1 or TrxR2 3'UTR, or a combination of the TrxR1 5' and 3'UTRs. Cell lines expressing constructs with the TrxR1 3'UTR demonstrated no response to restricted Se supply. In comparison the Se-deficient cells expressing constructs with the TrxR2 3'UTR showed considerably less luciferase activity than the Se-adequate cells. No disparity of response to Se supply was observed in the constructs containing the different TrxR1 5'UTR variants. The data show that there is a prioritisation of TrxR2 over TrxR1 during Se deficiency such that TrxR1 expression is more sensitive to Se supply than TrxR2 but this sensitivity of TrxR1 was not fully accounted for by TrxR1 5' or 3'UTR sequences when assessed using luciferase reporter constructs.  相似文献   

16.
To investigate the role of selenium (Se) in the developing porcine fetus, prepubertal gilts (n=42) were randomly assigned to either Se-adequate (0.39 ppm Se) or Se-deficient (0.05 ppm Se) gestation diets 6 wk prior to breeding. Maternal and fetal liver was collected at d 30, 45, 70, 90, and 114 of pregnancy. Concentrations of Se in maternal liver decreased during gestation in gilts fed the low-Se diet. The activity of cellular glutathione peroxidase (GPx) was decreased at d 30 and 45 of gestation in liver of gilts fed the low-Se diet. Concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in liver homogenates from gilts fed the low-Se diet. Within the fetuses, liver Se decreased in those fetuses of gilts fed the low-Se diet. Although the activity of GPx in fetal liver was not affected by the maternal diet, concentrations of H2O2 and MDA in fetal liver were greater in fetuses from gilts fed the low-Se diet. Maternal liver GPx activity was approx 12-fold greater than fetal liver GPx activity regardless of dietary treatment. These results indicate that maternal dietary Se intake affects fetal liver Se concentration and feeding a low-Se diet during gestation increases oxidative stress to the fetus, as measured by fetal liver H2O2 and MDA.  相似文献   

17.
Phospholipid hydroperoxide glutathione peroxidase (PHGPX) is the second intracellular selenium (Se)-dependent glutathione peroxidase (GSH-Px) identified in mammals. Our objectives were to determine the effect of dietary vitamin E and Se levels on PHGPX activity expression in testis, epididymis, and seminal vesicles of pubertal maturing rats, and the relationship of PHGPX expression with testicular development and sperm quality. Forty Sprague-Dawley male weanling rats (21-d old), were initially fed for 3 wk a torula yeast basal diet (containing 0.05 mg Se/kg) supplemented with marginal levels of Se (0.1 mg/kg as Na2SeO3) and vitamin E (25 IU/kg as all-rac-α-tocopheryl acetate). Then, rats were fed the basal diets supplemented with 0 or 0.2 mg Se/kg and 0 or 100 IU vitamin E/kg diet during the 3-wk period of pubertal maturing. Compared with the Se-supplemented rats, those fed the Se-deficient diets retained 31, 88, 67, and 50% of Se-dependent GSH-Px activities in liver, testis, epididymis, and seminal vesicles, respectively. Testes and seminal vesicles had substantially higher (5-to 20-fold) PHGPX activity than liver. Dietary Se deficiency did not affect PHGPX activities in the reproductive tissues, but reduced PHGPX activity in liver by 28% (P < 0.0001). Dietary vitamin E supplementation did not affect PHGPX activity in liver, whereas it raised PHGPX activity in seminal vesicles by 43% (P < 0.005). Neither dietary vitamin E nor Se levels affected body weight gains, reproductive organ weights, or sperm counts and morphology. In conclusion, expression of PHGPX activity in testis and seminal vesicles was high and regulated by dietary Se and vitamin E differently from that in liver.  相似文献   

18.
Young male Wistar rats received single i.p. injections of 3,3',4,4',5,5'-hexabromobiphenyl. In rats dosed with 40 mg/kg, food consumption and growth as well as liver retinol and retinyl palmitate concentrations decreased, while serum retinol and liver weight increased within 28 days following the injection. In rats receiving a 20-mg/kg dose, food consumption, growth, liver weight, and serum retinol were not affect, although liver retinol and retinyl palmitate concentrations declined to 23 and 21% of their respective control values. Vitamin A metabolism was studied in liver microsomes prepared from rats sacrificed 7 days after the 20-mg/kg injection. The rate of retinoic acid hydroxylation via the cytochrome P-450 system to 4-hydroxyretinoic acid plus the subsequent oxidation to 4-ketoretinoic acid was significantly elevated. Retinoic acid conjugation by UDP-glucuronyl transferase was also significantly increased. These changes corresponded with increased activities of cytochrome P-450-dependent aryl hydrocarbon hydroxylase and UDP-glucuronyltransferase conjugation of p-nitrophenol. These results provide a direct link between enzyme induction due to xenobiotics and specific steps in the vitamin A metabolic pathway.  相似文献   

19.
D Dietrich  W J Hickey    R Lamar 《Applied microbiology》1995,61(11):3904-3909
The white rot fungus Phanerochaete chrysosporium has demonstrated abilities to degrade many xenobiotic chemicals. In this study, the degradation of three model polychlorinated biphenyl (PCB) congeners (4,4'-dichlorobiphenyl [DCB], 3,3',4,4'-tetrachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl) by P. chrysosporium in liquid culture was examined. After 28 days of incubation, 14C partitioning analysis indicated extensive degradation of DCB, including 11% mineralization. In contrast, there was negligible mineralization of the tetrachloro- or hexachlorobiphenyl and little evidence for any significant metabolism. With all of the model PCBs, a large fraction of the 14C was determined to be biomass bound. Results from a time course study done with 4,4'-[14C]DCB to examine 14C partitioning dynamics indicated that the biomass-bound 14C was likely attributable to nonspecific adsorption of the PCBs to the fungal hyphae. In a subsequent isotope trapping experiment, 4-chlorobenzoic acid and 4-chlorobenzyl alcohol were identified as metabolites produced from 4,4'-[14C]DCB. To the best of our knowledge, this the first report describing intermediates formed by P. chrysosporium during PCB degradation. Results from these experiments suggested similarities between P. chrysosporium and bacterial systems in terms of effects of congener chlorination degree and pattern on PCB metabolism and intermediates characteristic of the PCB degradation process.  相似文献   

20.
This research examined the effects of dietary alpha-tocopheryl acetate (50 or 200 mg/kg diet) and selenium (Se, 0 or 0.5 ppm) supplementation on motion characteristics, oxidative stability and fertilizing ability of rabbit spermatozoa, fresh and stored for 24 h at 5 degrees C. The higher amount of dietary alpha-tocopheryl acetate increased the level of Vitamin E in the fresh semen (1.75 mmol/l versus 0.95 mmol/l) and its oxidative stability (thiobarbituric acid reactive substances-TBARS 12.44 nmol malondialdehyde/10(8) sperm versus 21.4 nmol malondialdehyde/10(8) sperm). Dietary Se increased gluthatione peroxidase activity (GPx) in erythrocytes (285 U/g Hb versus 207 U/g Hb), seminal plasma (270 U/l versus 190 U/l) and spermatozoa (1338 mU/10(9) sperm versus 1103 mU/10(9) sperm), whereas it did not show any effect on alpha-tocopherol level and TBARS. No synergy between Vitamin E and Se was shown. Storage for 24 h at 5 degrees C increased the TBARS level in all the experimental groups. Neither live and acrosome reacted spermatozoa, nor kinetic parameters, nor fertility rate were modified by dietary supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号