首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Selenium (Se) is an essential micronutrient in human health and Se deficiency has been incriminated in the etiology of cardiovascular diseases. However, the effect of long-term Se deficiency on the antioxidant capacities of vascular tissue has not been elucidated. This study was to determine whether long-term Se deficiency might affect the antioxidant capacity of rat vascular tissue and whether the diet Se might affect the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR) in rat vascular tissue. Weanling male Wister rats were fed Se-deficient and Se-adequate diets for 12 mo. Se was supplemented in drinking water (1 μg Se/mL) for 1 mo. The arterial walls isolated from various groups were used in the assay. In comparison with the control, Se-deficient rats exhibited significant decreases of GPx activity and total antioxidant capacity in the arterial wall. Similar decreases appeared in the heart, liver, and kidney. The superoxide dismutase activity was also decreased in the Se-deficient rat’s arterial wall. Followed by Se supplementation, they were restored to different extent. TR activity was decreased in the heart, liver, and kidney, but increased in the arterial wall. The content of malondialdehyde was increased markedly in Se-deficient rats. In conclusion, a positive correlation exists between dietary Se and antioxidant capacity of rat vascular tissue except TR. It seems that the activities of GPx and TR in the rat arterial wall were mediated in different pathways by the Se status.  相似文献   

2.
Biological effects of a nano red elemental selenium.   总被引:27,自引:0,他引:27  
A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.  相似文献   

3.
4.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

5.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

6.
The relationship between selenium (Se) deficiency-induced cardiac malfunction and endoplasmic reticulum (ER) stress is poorly understood. In the present study, 18 weaning Sprague Dawley rats were randomly fed with three different Se diets, and myocardial glutathione peroxidase (GPx) activity was measured by an enzyme activity assay. Cardiac function was evaluated by hemodynamic parameters. ER stress markers immunoglobulin-binding protein (BiP)/glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were detected by western blotting. Our data showed that myocardial GPx activity and cardiac function were conspicuously impaired in Se-deficient rats. Expression of GRP78 and CHOP was significantly upregulated by treatment of Se deficiency. Improvements in myocardial GPx activity and cardiac function, as well as decreases in expression of GRP78 and CHOP, were observed after Se supplementation. Consequently, our data show that ER stress was involved in Se deficiency-induced cardiac dysfunction.  相似文献   

7.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that have promoting activity in the liver. PCBs induce oxidative stress, which may influence carcinogenesis. Epidemiological studies strongly suggest an inverse relationship between dietary selenium (Se) and cancer. Despite evidence linking Se deficiency to hepatocellular carcinoma and liver necrosis, the underlying mechanisms for Se cancer protection in the liver remain to be determined. We examined the effect of dietary Se on the tumor promoting activities of two PCBs congeners, 3,3', 4,4'-tetrachlorobiphenyl (PCB-77) and 2,2', 4,4', 5,5'-hexachlorobiphenyl (PCB-153) using a 2-stage carcinogenesis model. An AIN-93 torula yeast-based purified diet containing 0.02 (deficient), 0.2 (adequate), or 2.0 mg (supplemental) selenium/kg diet was fed to Sprague-Dawley female rats starting ten days after administering a single dose of diethylnitrosamine (150 mg/kg). After being fed the selenium diets for 3 weeks, rats received four i.p. injections of either PCB-77 or PCB-153 (150 micromol/kg) administered every 14 days. The number of placental glutathione S-transferase (PGST)-positive foci per cm(3) and per liver among the PCB-77-treated rats was increased as the Se dietary level increased. Unlike PCB-77, rats receiving PCB-153 did not show the same Se dose-response effect; nevertheless, Se supplementation did not confer protection against foci development. However, the 2.0 ppm Se diet reduced the mean focal volume, indicating a possible protective effect by inhibiting progression of preneoplastic lesions into larger foci. Cell proliferation was not inhibited by Se in the liver of the PCB-treated groups. Se did not prevent the PCB-77-induced decrease of hepatic Se and associated reduction in glutathione peroxidase (GPx) activity. In contrast, thioredoxin reductase (TrxR) activity was not affected by the PCBs treatment or by Se supplementation. These findings indicate that Se does not inhibit the number of PGST-positive foci induced during promotion by PCBs, but that the size of the lesions may be inhibited. The effects of Se on altered hepatic foci do not correlate with its effects on GPx and TrxR.  相似文献   

8.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

9.
Ren F  Chen X  Hesketh J  Gan F  Huang K 《PloS one》2012,7(4):e35375
There is controversy in the literature over whether the selenium (Se) influences cellular immune responses, and the mechanisms possibly underlying these effects are unclear. In this study, the effects of Se on T-cell proliferation and IL-2 production were studied in primary porcine splenocytes. Splenocytes were treated with different mitogens in the presence of 0.5-4 μmol/L sodium selenite. Se significantly promoted T-cell receptor (TCR) or concanavalin A (ConA)-induced T-cell proliferation and IL-2 production but failed to regulate T-cell response to phytohemagglutinin (PHA). In addition, Se significantly increased the levels of cytosolic glutathione peroxidase (GPx1) and thioredoxin reductase 1 (TR1) mRNA, the activity of GPx1 and the concentration of reduced glutathione (GSH) in the unstimulated, or activated splenocytes. These results indicated that Se improved the redox status in all splenocytes, including unstimulated, TCR, ConA and PHA -stimulated, but only TCR and ConA-induced T-cell activation was affected by the redox status. N-acetylcysteine (NAC), a pharmacological antioxidant, increased T-cell proliferation and IL-2 production by TCR and ConA stimulated splenocytes but had no effect on the response to PHA in primary porcine splenocytes confirming that PHA-induced T-cell activation is insensitive to the redox status. We conclude that Se promotes GPx1 and TR1 expression and increases antioxidative capacity in porcine splenocytes, which enhances TCR or ConA -induced T-cell activation but not PHA-induced T-cell activation. The different susceptibilities to Se between the TCR, ConA and PHA -induced T-cell activation may help to explain the controversy in the literature over whether or not Se boosts immune responses.  相似文献   

10.
There is controversy as to the recommended daily intake of selenium (Se), and whether current New Zealand diets are adequate in this nutrient. Various functional single-nucleotide polymorphisms (SNPs) polymorphisms may affect the efficacy of Se utilisation. These include the glutathione peroxidases GPx1 rs1050450, GPx4 rs713041, as well as selenoproteins SEPP1 rs3877899, SEL15 rs5845, SELS rs28665122 and SELS rs4965373. This cross-sectional study measured serum Se levels of 503 healthy Caucasian men in Auckland, New Zealand, between ages 20–81. The Se distribution was compared with activities of the antioxidant enzymes glutathione peroxidase and thioredoxin reductase, and DNA damage as measured by the single cell gel electrophoresis assay, both without and with a peroxide-induced oxidative challenge. Serum Se was measured using inductively coupled plasma-dynamic reaction cell-mass spectrometry, while selenoprotein SNPs were estimated using TaqMan® SNP genotyping assays. While antioxidant enzyme activities and DNA damage recorded after a peroxide challenge increased with increasing serum selenium, the inherent DNA damage levels in leukocytes showed no statistically significant relationship with serum selenium. However, these relationships and dietary Se requirements at the individual level were modified by several different SNPs in genes for selenoproteins. The GPx1 rs1050450 C allele was significantly associated with GPx activity. Significant correlations between serum Se level and GPX activity were seen with all genotypes except for homozygous minor allele carriers, while the GPx1 rs1050450 CT genotype showed the highest correlation. Several genotypes showed significant correlations between serum Se and TR activity with SEPP1 rs3877899 GG genotype showing the highest correlation. A significant decreasing trend in DNA damage with increasing serum Se was seen among GPx1 rs1050450 CC and GPx4 rs713041 TT genotype carriers up to a serum Se level of 116 and 149 ng/ml, respectively. In the absence of this genetic information, we would recommend a serum Se concentration in the region of 100–150 ng/ml as providing a useful compromise.  相似文献   

11.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the γ-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

12.
Mammalian thioredoxin reductase (TRR; NADPH2:oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) is a new member of the family of selenocysteine-containing proteins. TRR activity in Se-deficient rat liver is reported to decrease to 4.5 to 15% of the activity in Se-adequate rat liver, similar to the fall in Se-dependent glutathione peroxidase-1 activity. Both glutathione peroxidase-1 enzyme activity and mRNA levels decrease dramatically in Se deficiency, whereas glutathione peroxidase-4 activity only decreases to 40% of Se-adequate levels and mRNA level is little affected by Se deficiency. The purpose of these experiments is to study the effect of Se status on TRR mRNA levels and enzyme activity in our well-characterized rat model, and to compare this regulation directly to the regulation of other Se-dependent proteins in male weanling rats fed Se-deficient diets or supplemented with dietary Se for 28 days. In two experiments, TRR activity in Se-deficient liver decreased to 15% of Se-adequate activity as compared to 2% and 40% of Se-adequate levels for GPX1 and GPX4, respectively. Using ribonuclease protection analysis, we found that TRR mRNA levels in Se-deficient rat liver decreased to 70% of Se-adequate levels. This decrease in TRR mRNA was similar to the GPX4 mRNA decrease in Se-deficient liver in these experiments, whereas GPX1 mRNA levels decreased to 23% of Se-adequate levels. This study clearly shows that TRR represents a third pattern of Se regulation with dramatic down-regulation of enzyme activity in Se deficiency but with only a modest decrease in mRNA level. The conservation of TRR mRNA in Se deficiency suggests that this is a valued enzyme; the loss of TRR activity in Se deficiency may be the cause of some signs of Se deficiency.  相似文献   

13.
14.
In order to investigate the efficiency of a single selenium (Se) administration in restoring selenium status, Se and antioxidant enzymes were studied in an animal model of Se depletion. In Se-depleted animals receiving or not a single parenteral administration of Se, plasma, red blood cell (RBC), and tissue Se levels were measured concurrently with glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities. The oxidative stress was assessed by thiobarbituric acid-reactive species (TBARs), total thiol groups, glutathione, and tocopherol measurements. Our study showed that Se depletion with alterations in the antioxidant defense system (Se and GPx activity decreases) led to an increase of lipid peroxidation, a decrease of the plasma vitamin E level, and SOD activation. Sodium selenite injection resulted after 24 h in an optimal plasma Se level and a reactivation of GPx activity. In liver, brain, and kidney, Se levels in injected animals were higher than those in reference animals. However, this single administration of Se failed to decrease free radical damage induced by Se depletion. Therefore, in burned patients who exhibit an altered Se status despite a daily usually restricted Se supplementation, the early administration of a consistent Se amount to improve the GPx activity should be of great interest in preventing the impairment of the antioxidant status.  相似文献   

15.
16.
BackgroundHigher environmental temperature is a major abiotic stress factor for animals and human beings. The selenium (Se) is an important trace mineral having diverse health promoting effects under stress conditions. However, studies on dietary requirement of selenium under prolonged heat stress condition are lacking. Present study discern the effect of higher dietary Se levels on antioxidant, cytokine, haemato-biochemical profile, and immune response, and the selenoproteins mRNA expression in rats under prolonged heat stress (HS) condition.MethodsWeaned Wistar rats (4 wk age; 67.6 ± 1.53 g BW; n = 72) housed under thermoneutral (TN) or HS conditions and fed with purified diets containing three graded Se levels were divided in six experimental groups. The groups were 1) TN control with 138 ppb Se (TN_CON), 2) HS control with 138 ppb Se (HS_CON), 3) TN with higher Se @ 291 ppb (TN_Se1), 4) HS with higher Se @ 291 ppb (HS_Se1) 5) TN with higher Se @ 460 ppb (TN_Se2), 6) HS with higher Se @ 460 ppb (HS_Se2). Rats in all the six groups were maintained in TN environmental conditions (57.3 ± 0.22 temperature humidity index; THI) for initial 28 days period. Subsequently, rats of HS groups were exposed to 77.0 ± 0.11 THI for 6 h/d in a psychrometric chamber for last fourteen days.ResultsHigher dietary Se (291 and 460 ppb) significantly improved the blood hemoglobin concentration and reduced serum alanine aminotransferase activity of rats under HS conditions. The serum triiodothyronine and insulin levels were significantly higher in high dietary Se groups irrespective of the environmental conditions. Similarly, the serum reduced glutathione levels, and catalase and superoxide dismutase enzyme activity were increased and malondialdehyde levels were reduced in high dietary Se groups irrespective of stress conditions. The glutathione peroxidase (GPx) activity was significantly higher in 460 ppb dietary Se groups as compared to other groups. The serum pro-inflammatory cytokine interleukin (IL)− 1 was declined, whereas the anti-inflammatory cytokine IL-10 level was increased in high dietary Se fed rats under both HS and TN conditions with 460 ppb dietary Se groups showing pronounced effects. Further, there was heat stress- and dietary Se level dependent- up regulation in hepatic GPx and iodothyronine deiodinase-II mRNA expression and similar pattern was noticed in hepatic thioredoxin reductase mRNA expression. The selenoprotein-P mRNA expression was up regulated in 460 ppb Se fed HS group as compared to CON and Se1_C groups. High dietary Se improved the humoral immune response 7d after antigen inoculation under HS conditions whereas cell-mediated immune response was augmented in rats fed higher Se under TN condition.ConclusionIt is concluded that under prolonged heat stress conditions the dietary requirement of Se may be increased to 460 ppb for improving the antioxidant status and humoral immune response, cytokine levels, modulating the thyroid and insulin hormone, and the selenoproteins mRNA expression of rats.  相似文献   

17.
Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.  相似文献   

18.
In this study, we investigated the effects of selenium (Se) on the properties of erythrocytes and atherogenic index in the presence and absence of high cholesterol diet (HCD). The effect of selected two different doses (1 μg and 50 μg Se/kg/body weight) on HCD-induced oxidative stress was investigated. The hemolysis of the erythrocytes of the HCD rats as well as by high levels of selenium or their combination was markedly increased. Likewise, atherogenic index and plasma glutathione peroxidase (GPx) activity were significantly increased in the same groups of rats compared to control ones. In contrast, paraoxonase activity, glutathione levels and protein thiol levels, catalase, GPx, and superoxide dismutase activities were significantly decreased in rats that received the HCD, high selenium dose, or their combination. Malondialdehyde and protein carbonyl levels in the plasma and red blood cells were significantly increased by HCD and high selenium dose administration. Co-administration of selenium at low dose with or without an HCD restored all of the investigated parameters to near-normal values. The results of this study suggest that excess selenium administration with HCD worsens the atherogenic index and enhances formation of oxidized red blood cells. At dosage levels in the nutritional range such as 1 μg Se/kg body weight, selenium ameliorates the atherogenic index and preserves the antioxidant capacity of the erythrocytes.  相似文献   

19.
Glutathione peroxidase and thioredoxin reductase are selenocysteine-dependent enzymes that protect against oxidative injury. This study examined the effects of dietary selenium on the activity of these two enzymes in rats, and investigated the ability of selenium to modulate myocardial function post ischemia-reperfusion. Male wistar rats were fed diets containing 0, 50, 240 and 1000 microg/kg sodium selenite for 5 weeks. Langendorff perfused hearts isolated from these rats were subjected to 22.5 min global ischemia and 45 min reperfusion, with functional recovery assessed. Liver samples were collected at the time of sacrifice, and heart and liver tissues assayed for thioredoxin reductase and glutathione peroxidase activity. Selenium deficiency reduced the activity of both glutathione peroxidase and thioredoxin reductase systemically. Hearts from selenium deficient animals were more susceptible to ischemia-reperfusion injury when compared to normal controls (38% recovery of rate pressure product (RPP) vs. 47% recovery of RPP). Selenium supplementation increased the endogenous activity of thioredoxin reductase and glutathione peroxidase and resulted in improved recovery of cardiac function post ischemia reperfusion (57% recovery of RPP). Endogenous activity of glutathione peroxidase and thioredoxin reductase is dependent on an adequate supply of the micronutrient selenium. Reduced activity of these antioxidant enzymes is associated with significant reductions in myocardial function post ischemia-reperfusion.  相似文献   

20.
The relative contributions of catalase and the selenoenzyme glutathione peroxidase (GSH-Px) were elucidated in the rat liver by selectively modulating the activities of these enzymes using dietary selenium (Se) and the catalase inhibitor 3-amino-1,2,4-triazole (3-AT). Increased peroxidation occurred only in Se-deficient rats with markedly reduced cytosolic and mitochondrial GSH-Px activities. Although 3-AT treatment resulted in a 75% reduction of hepatic catalase activity and also a 20% reduction of both cytosolic and mitochondrial superoxide dismutase (SOD) activity, no incremental increase in peroxidation was observed over that associated with Se deficiency. In Se-deficient animals, treatment with 3-AT resulted in a doubling of cytosolic GSH-Px. This was associated with a 49% elevation in hepatic Se suggesting that increased Se may have contributed to the enhanced GSH-Px activity. These results suggest that GSH-Px plays the pivotal role in preventing hepatic peroxidation. Furthermore, the effects of 3-AT in vivo are not restricted to inhibition of catalase activity insofar as it also affects cytosolic GSH-Px activity and cytosolic and mitochondrial SOD activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号