首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
The genes encoding for a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase were co-introduced into Slovak potato (Solanum tuberosum L.) cultivar ETA using Agrobacterium tumefaciens. Expression of both genes was driven by wound-inducible polyubiquitin promoter isolated from Slovak potato breeding line 116/86. Analyses showed inducible, peel-specific expression of both transgenes under stress conditions. The effect of transgene expression on fungal susceptibility of transformants was evaluated in vitro and in vivo. Experiments with crude protein extracts isolated from transgenic microtubers showed growth inhibition of Rhizoctonia solani hyphae in the range from 7.3 to 14.2%. In contrast, experiments performed in growth chamber conditions revealed that the polyubiquitin promoter driven transgene expression did not ensure any obvious increase of transgenic potato resistance against Rhizoctonia solani.  相似文献   

2.
3.
4.
Isopentenyl diphosphate isomerase (IDI, EC 5.3.3.2) catalyzes the revisable conversion of 5-carbon isopentenyl diphosphate and its isomer dimethylallyl diphosphate, which are the essential precursors for isoprenoids, including carotenoids. Here we report on the cloning and characterization of a novel cDNA encoding IDI from sweet potato. The full-length cDNA is 1155 bp with an ORF of 892 bp encoding a polypeptide of 296 amino acids, which was designated as IbIDI (GenBank Acc. No: DQ150100). The computational molecular weight is 33.8 kDa and the theoretical isoelectric point is 5.76. The deduced amino acid sequence of IbIDI is similar to the known plant IDIs. The tissue expression analysis revealed that IbIDI expressed at higher level in sweet-potato’s mature leaves and tender leaves than that in tubers, meanwhile, no expression signal could be detected in veins. Recombinant IbIDI was heterologously expressed in engineered Escherichia coli which led to the reconstruction of the carotenoid pathway. In the engineered E. coli, IbIDI could take the role of Arabidopsis IDI gene to produce the orange β-carotene. In summary, cloning and characterization of the novel IDI gene from sweet potato will facilitate our understanding of the molecular genetical mechanism of carotenoid biosynthesis and promote the metabolic engineering studies of carotenoid in sweet potato.  相似文献   

5.
Farnesyl diphosphate synthase (FPS; EC 2.5.1.1/EC 2.5.1.10) catalyzes the synthesis of farnesyl diphosphate, a key intermediate in the biosynthesis of sesquiterpenes. This present study described the cloning and characterization of a cDNA encoding FPS from leaves of Michelia chapensis Dandy (designated as McFPS, GenBank accession number: GQ214406) for the first time. McFPS was 1,432 bp and contained an open reading frame (ORF) of 1,056 bp, encoding a protein of 351 amino acids with a calculated molecular mass of 40.52 kDa. Bioinformatic analysis revealed that the deduced McFPS had high homology with FPSs from other plant species. Phylogenetic tree analysis indicated that McFPS belonged to the plant FPS group and had the closest relationship with FPS from Chimonanthus praecox. Southern blot analysis revealed that there were at most two copies of McFPS gene existed in M. chapensis genome. The organ expression pattern analysis showed that McFPS expressed strongly only in leaves, and there were no expression in stems and roots, implying that McFPS was an organ-specific expressing gene. Functional complementation of McFPS in a FPS-deficient yeast strain demonstrated that cloned cDNA encoded a farnesyl diphosphate synthase.  相似文献   

6.
张燕  张阳  张博  吴小刚  张力群 《微生物学报》2018,58(7):1202-1222
【目的】包括碳源代谢等不同环境因子可调控生防菌株生防相关因子表达,进而影响其防病效果。荧光假单胞菌2P24可防治多种植物病原真菌、细菌引起的土传病害,抗生素2,4-二乙酰基间苯三酚(2,4-diacetylphoroglucinol,2,4-DAPG)是其主要生防因子之一。本文利用平板对峙法及遗传学方法研究不同碳源对菌株2P24产生2,4-DAPG的影响及相关的调控途径。【方法】利用平板对峙法检测了菌株2P24在添加葡萄糖、果糖和蔗糖等碳源的土豆浸液培养基中对棉花立枯丝核菌(Rhizoctonia solani)的拮抗能力及菌株2P24中影响2,4-DAPG产生的相关基因的表达。另外,利用Tn5转座子对含有2,4-DAPG合成基因phl A报告质粒p970Gm-phl Ap的野生型菌株2P24进行随机突变,在果糖土豆浸液培养基中筛选提高phl A基因表达的突变菌株。【结果】平板对峙实验表明,菌株2P24以葡萄糖为碳源时其抑菌活性最强,蔗糖次之,而以果糖等为碳源时菌株2P24无抑菌活性;转录融合实验进一步表明葡萄糖可促进phl A基因的表达,果糖则不影响phl A基因的表达。在果糖土豆浸液培养基中,转座子随机突变实验获得了5株可明显提高phl A基因表达的突变菌株。Tn5插入位点和序列分析显示其中一个突变体是Tn5破坏了che B基因。转录检测表明与野生菌株相比,che B突变体中phl A基因的表达和2,4-DAPG的前体物质间苯三酚(phloroglucinol,PG)产量都显著提高。游动性实验发现突变che B基因可显著降低该菌株的游动性。【结论】上述结果表明菌株2P24中不同碳源在转录水平上可影响phl A基因的表达,进而影响2,4-DAPG产生。遗传学结果也显示,che B基因参与调控2,4-DAPG生物合成过程。  相似文献   

7.
8.
During 2010–2011, a severe leaf spot disease of sweet potato (Ipomoea batatas) was found in Haikou City, Hainan province of China. The disease is characterized with large, irregular, brown, necrotic lesions on the margin or in the centre of leaves. A species of Stemphylium was consistently recovered from pieces of symptomatic tissues on PDA. Based on morphological characteristics and molecular identification by rDNA‐ITS gene analysis, the fungal species was identified as Stemphylium solani Weber, and its pathogenicity was confirmed by Koch's postulates. This is the first report of leaf spot on sweet potato caused by Ssolani in China.  相似文献   

9.
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana–Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from β‐sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen‐inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild‐type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild‐type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen‐associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/β‐sitosterol ratio as whole‐leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid‐mediated defence signalling but attenuate pathogen‐induced expression of the defence regulator flavin‐dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to β‐sitosterol ratio in plant membranes.  相似文献   

10.
Summary The iaaL gene of Pseudomonas syringae subsp. savastanoi encodes an indoleacetic acid-lysine synthetase that conjugates lysine to indoleacetic acid. A chimaeric gene consisting of the iaaL coding region under the control of the 35S RNA promoter from cauliflower mosaic virus (35SiaaL) has been used to test if iaaL gene expression leads to morphological alterations in tobacco and potato. Transgenic tobacco plantlets bearing this construct have been shown to synthesize IAA-[14C]lysine when fed with [14C]lysine. In late stages of development, their leaves show an increased nastic curvature (epinasty) of the petiole and midvein, a finding suggestive of an abnormal auxin metabolism. The alteration is transmitted to progeny as a dominant Mendelian trait cosegregating with the kanamycin resistance marker. Transgenic potato plants harbouring the construct are also characterised by petiole epinasty. Moreover, 35SiaaL transgenic plants have an increased internode length in potato and decreased root growth in both tobacco and potato. An increased content of IAA-conjugates in leaf blade was found to correlate with the epinastic alterations caused by iaaL gene expression in tobacco leaves. These data provide evidence that IAA conjugation is able to modulate hormone action, suggesting that the widespread endogenous auxin-conjugating activities are of physiological importance.  相似文献   

11.
Potato antimicrobial sesquiterpenoid phytoalexins lubimin and rishitin have been implicated in resistance to the late blight pathogen, Phytophthora infestans and early blight pathogen, Alternaria solani. We generated transgenic potato plants in which sesquiterpene cyclase, a key enzyme for production of lubimin and rishitin, is compromised by RNAi to investigate the role of phytoalexins in potato defence. The transgenic tubers were deficient in phytoalexins and exhibited reduced post-invasive resistance to an avirulent isolate of P. infestans, resulting in successful infection of the first attacked cells without induction of cell death. However, cell death was observed in the subsequently penetrated cells. Although we failed to detect phytoalexins and antifungal activity in the extract from wild-type leaves, post-invasive resistance to avirulent P. infestans was reduced in transgenic leaves. On the other hand, A. solani frequently penetrated epidermal cells of transgenic leaves and caused severe disease symptoms presumably from a deficiency in unidentified antifungal compounds. The contribution of antimicrobial components to resistance to penetration and later colonization may vary depending on the pathogen species, suggesting that sesquiterpene cyclase-mediated compounds participate in pre-invasive resistance to necrotrophic pathogen A. solani and post-invasive resistance to hemibiotrophic pathogen P. infestans.  相似文献   

12.
13.
Silver scurf caused by Helminthosporium solani and dry rot caused by Fusarium spp. are tuber diseases of economic importance in potato-growing areas worldwide. Recently, the two pathogens have developed resistance to thiabendazole (TBZ), a post-harvest fungicide commonly used for their control. Therefore, alternative disease control strategies are needed. The present study assessed the efficacy of the biopesticides Bio-Save 10LP (Pseudomonas syringae-strain ESC-10; Ps10) and Bio-Save 11LP (P. syringae-strain ESC-11; Ps11) against silver scurf and dry rot. Approximately 30 isolates representing the genus Fusarium were obtained from symptomatic potato specimens with dry rot from New Brunswick (NB), Nova Scotia (NS), Prince Edward Island (PE) and Alberta (AB), Canada. Species isolated were Fusarium sambucinum, Fusarium tumidum, Fusarium coeruleum, Fusarium culmorum, and Fusarium avenaceum. H. solani isolated from AB, NB and PE was included in the study as the causal agent of silver scurf. The efficacy of P. syringae against F. sambucinum and H. solani was tested in vitro. Ps10 and Ps11 inhibited the growth of H. solani up to 68% (NB isolate) and 73% (PE isolate), respectively and the inhibition was more or less comparable with that of TBZ. F. sambucinum was not significantly inhibited by Ps10; however Ps11 significantly inhibited AB, PE and NB isolates by 43%, 28% and 54%, respectively. Conversely, TBZ inhibited AB, PE and NB isolates of Fusarium spp. in vitro by 86%, 88% and 100%, respectively. TBZ in combination with either Ps10 or Ps11 did not always reduce the growth of H. solani or Fusarium spp. in vitro compared to that of TBZ alone. Storage trials conducted in NB and PE assessed the efficacy of P. syringae against H. solani or Fusarium spp. in vivo and confirmed that the application of P. syringae or TBZ alone or in combination significantly reduced the incidence and/or severity of silver scurf and Fusarium dry rot. Ps11 alone or in combination with TBZ was significantly more effective than Ps10 in controlling silver scurf disease severity. The reduction in disease severity of dry rot and silver scurf in storage due to Ps10, Ps11, or TBZ or their combinations was consistently comparable. Results indicate that the use of P. syringae (strains ESC-11 or ESC-10) as a post-harvest treatment can contribute to the management of both silver scurf and Fusarium dry rot in potato storages.  相似文献   

14.
15.
Chye ML  Zhao KJ  He ZM  Ramalingam S  Fung KL 《Planta》2005,220(5):717-730
Brassica juncea BjCHI1 is a unique chitinase with two chitin-binding domains. Here, we show that, unlike other chitinases, potato-expressed BjCHI1 shows hemagglutination ability. BjCHI1 expression in B. juncea seedlings is induced by Rhizoctonia solani infection, suggesting its protective role against this fungus. To verify this, transgenic potato (Solanum tuberosum L. cv. Desiree) plants expressing BjCHI1 generated by Agrobacterium-mediated transformation were challenged with R. solani. We also transformed potato with a cDNA encoding Hevea brasiliensis -1,3-glucanase, designated HbGLU, and a pBI121-derivative that contains cDNAs encoding both BjCHI1 and HbGLU. In vitro fungal bioassays using Trichoderma viride showed that extracts from transgenic potato lines co-expressing BjCHI1 and HbGLU inhibited fungal growth better than extracts from transgenic potato expressing either BjCHI1 or HbGLU, suggesting a synergistic effect. Consistently, in vivo fungal bioassays with soil-borne R. solani on young transgenic potato plants indicated that the co-expressing plants showed healthier root development than untransformed plants or those that expressed either BjCHI1 or HbGLU. Light microscopy and transmission electron microscopy revealed abundant intact R. solani hyphae and monilioid cells in untransformed roots and disintegrated fungus in the BjCHI1-expressing and the BjCHI1 and HbGLU co-expressing plants. Observations of collapsed epidermal cells in the co-expressing potato roots suggest that these proteins effectively degrade the fungal cell wall, producing elicitors that initiate other defense responses causing epidermal cell collapse that ultimately restricts further fungal penetration.  相似文献   

16.
Hänsch R  Kurz T  Schulze J  Mendel RR  Cerff R  Hehl R 《Planta》2003,218(1):79-86
The maize (Zea mays L.) glyceraldehyde-3-phosphate dehydrogenase gene 4 (GapC4) promoter confers anaerobic gene expression in tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and Arabidopsis thaliana (L.) Heynh. Here we have investigated its expression in hybrid poplar (Populus tremula × P. alba). Our results show that the promoter is not expressed in leaves and stems under normoxic conditions while anaerobiosis induces reporter gene expression in leaves up to a level observed for the STLS-1 promoter from potato that is shown to confer leaf-specific gene expression in transgenic poplar. Anaerobic induction is cell autonomous and requires a CO2 atmosphere and light. As in tobacco, the GapC4 promoter in poplar is wound inducible. The induction by CO2 and light may reflect a natural situation because flooding, a natural cause of anaerobiosis, is often accompanied by high CO2 concentrations in the floodwater. Our results show that the GapC4 promoter is suitable as an anaerobic reporter and as an inducible gene expression system in poplar.Abbreviations CaMV cauliflower mosaic virus - GapC4 glyceraldehyde-3-phosphate dehydrogenase gene 4 - GUS -glucuronidase - 4-MU methylumbelliferone - STLS-1 stem- and leaf-specific promoter 1  相似文献   

17.
Globodera rostochiensis and Rhizoctonia solani are the most important growth limiting factors influencing potato production in Iran. The effects of inoculation with Potato Cyst Nematodes (PCN) (0, 50, 75 and 100 cysts/3.5?kg soil) and R. solani (with or without inoculation) on potato growth and development were investigated in cultivars Santé and Marfona. Inoculation with R. solani induced severe damage, especially when inoculation was accompanied with high density of PCN. The damage caused by R. solani tended to increase with an increase in PCN density, especially in Marfona. In Santé, number of stems or branches per plant significantly increased by inoculation with R. solani, while in Marfona it was significantly affected either by R. solani inoculation or PCN density. In Santé, number of stolons per plant was significantly increased by PCN, but not by R. solani. In Marfona, however, the number of stolons per plant was significantly affected either by R. solani inoculation or by presence of PCN, but not affected by PCN density. The general effect of R. solani or PCN inoculation treatments on shoot, below-ground and total dry weight of potato was significant, but strongly affected by cultivar. In general, our study supports the synergistic interaction between R. solani and PCN and its moderation by the use of a resistant cultivar such as Santé.  相似文献   

18.
19.
During spring and summer of 2004 and 2005, a new disease of alfalfa was observed for the first time in some areas of the Kurdistan province in Iran. Symptoms were initially yellowed area on leaves, within which water‐soaked, irregular spots developed. These spots eventually coalesced to produce large necrotic areas. Symptoms on petiole and stem include water‐soaked lesions, which later turned brown. Gram negative and rod‐shaped bacteria were isolated from infected tissues. From the results of LOPAT tests (levan production, oxidase reaction, potato soft rot, arginine dihydrolase and tobacco hypersensitivity) and other phenotypic, biochemical and physiological properties investigated, the causal bacterium have been identified as Pseudomonas syringae pv. syringae. Pathogenicity of selected strains was confirmed by injecting a bacterial suspension into leaf tissue from the underside of leaves.  相似文献   

20.
Populations of pathogenic Pseudomonas syringae pv. syringae were monitored on apparently healthy leaves, blossoms, and fruit from two apple orchards with known histories of blister bark and a pear orchard with a known history of blossom blast. Populations on blossoms and fruits were higher on pears than on apples. Yellow-pigmented, non-pathogenic bacteria might have suppressed or masked the presence of P. syringae pv. syringae on apple trees. Populations of P. syringae pv. syringae on apple and pear leaves fluctuated sharply but higher levels generally occurred during the 1984/85 growing season than during the drier 1983/84 season. This investigation indicates that the resident phase of P. syringae pv. syringae is probably a major source of inoculum for apple blister bark and pear blossom blast in South Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号