首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries.  相似文献   

3.
Eschscholzia californica produces various types of isoquinoline alkaloids. The structural diversity of these chemicals is often due to cytochrome P450 (P450) activities. Members of the CYP719A subfamily, which are found only in isoquinoline alkaloid-producing plant species, catalyze methylenedioxy bridge-forming reactions. In this study, we isolated four kinds of CYP719A genes from E. californica to characterize their functions. These four cDNAs encoded amino acid sequences that were highly homologous to Coptis japonica CYP719A1 and E. californica CYP719A2 and CYP719A3, which suggested that these gene products may be involved in isoquinoline alkaloid biosynthesis in E. californica, especially in methylenedioxy bridge-forming reactions. Expression analysis of these genes showed that two genes (CYP719A9 and CYP719A11) were preferentially expressed in plant leaf, where pavine-type alkaloids accumulate, whereas the other two showed higher expression in root than in other tissues. They were suggested to have distinct physiological functions in isoquinoline alkaloid biosynthesis. Enzyme assay analysis using recombinant proteins expressed in yeast showed that CYP719A5 had cheilanthifoline synthase activity, which was expected based on the similarity of its primary structure to that of Argemone mexicana cheilanthifoline synthase (deposited at DDBJ/GenBanktrade mark/EMBL). In addition, enzyme assay analysis of recombinant CYP719A9 suggested that it has methylenedioxy bridge-forming activity toward (R,S)-reticuline. CYP719A9 might be involved in the biosynthesis of pavine- and/or simple benzylisoquinoline-type alkaloids, which have a methylenedioxy bridge in an isoquinoline ring, in E. californica leaf.  相似文献   

4.
Two cytochrome P450 (P450) cDNAs involved in the biosynthesis of berberine, an antimicrobial benzylisoquinoline alkaloid, were isolated from cultured Coptis japonica cells and characterized. A sequence analysis showed that one C. japonica P450 (designated CYP719) belonged to a novel P450 family. Further, heterologous expression in yeast confirmed that it had the same activity as a methylenedioxy bridge-forming enzyme (canadine synthase), which catalyzes the conversion of (S)-tetrahydrocolumbamine ((S)-THC) to (S)-tetrahydroberberine ((S)-THB, (S)-canadine). The other P450 (designated CYP80B2) showed high homology to California poppy (S)-N-methylcoclaurine-3'-hydroxylase (CYP80B1), which converts (S)-N-methylcoclaurine to (S)-3'-hydroxy-N-methylcoclaurine. Recombinant CYP719 showed typical P450 properties as well as high substrate affinity and specificity for (S)-THC. (S)Scoulerine was not a substrate of CYP719, indicating that some other P450, e.g. (S)-cheilanthifoline synthase, is needed in (S)-stylopine biosynthesis. All of the berberine biosynthetic genes, including CYP719 and CYP80B2, were highly expressed in selected cultured C. japonica cells and moderately expressed in root, which suggests coordinated regulation of the expression of biosynthetic genes.  相似文献   

5.
6.
7.
In vertebrates, cytochrome P450s of the CYP2 and CYP3 families play a dominant role in drug metabolism, while in insects members of the CYP6 and CYP28 families have been implicated in metabolism of insecticides and toxic natural plant compounds. A degenerate 3 RACE strategy resulted in the identification of fifteen novel P450s from an alkaloid-resistant species of Drosophila. The strong (17.4-fold) and highly specific induction of a single gene (CYP4D10) by the toxic isoquinoline alkaloids of a commonly utilized host-plant (saguaro cactus) provides the first indication that members of the CYP4 family in insects may play an important role in the maintenance of specific insect-host plant relationships. Strong barbiturate inducibility of CYP4D10 and two other D. mettleri P450 sequences of the CYP4 family was also observed, suggesting a pattern of xenobiotic responsiveness more similar to those of several vertebrate drug-metabolizing enzymes than to putative vertebrate CYP4 homologs.  相似文献   

8.
Sporotrichosis is an emerging chronic, granulomatous, subcutaneous, mycotic infection caused by Sporothrix species. Sporotrichosis is treated with the azole drug itraconazole as ketoconazole is ineffective. It is a well-known fact that azole drugs act by inhibiting cytochrome P450 monooxygenases (P450s), heme-thiolate proteins. To date, nothing is known about P450s in Sporothrix schenckii and the molecular basis of its resistance to ketoconazole. Here we present genome-wide identification, annotation, phylogenetic analysis and comprehensive P450 family-level comparative analysis of S. schenckii P450s with pathogenic fungi P450s, along with a rationale for ketoconazole resistance by S. schenckii based on in silico structural analysis of CYP51. Genome data-mining of S. schenckii revealed 40 P450s in its genome that can be grouped into 32 P450 families and 39 P450 subfamilies. Comprehensive comparative analysis of P450s revealed that S. schenckii shares 11 P450 families with plant pathogenic fungi and has three unique P450 families: CYP5077, CYP5386 and CYP5696 (novel family). Among P450s, CYP51, the main target of azole drugs was also found in S. schenckii. 3D modeling of S. schenckii CYP51 revealed the presence of characteristic P450 motifs with exceptionally large reductase interaction site 2. In silico analysis revealed number of mutations that can be associated with ketoconazole resistance, especially at the channel entrance to the active site. One of possible reason for better stabilization of itraconazole, compared to ketoconazole, is that the more extended molecule of itraconazole may form a hydrogen bond with ASN-230. This in turn may explain its effectiveness against S. schenckii vis-a-vis resistant to ketoconazole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

9.
Plants depend on cytochrome P450 (CYP) enzymes for nearly every aspect of their biology. In several sequenced angiosperms, CYP genes constitute up to 1% of the protein coding genes. The angiosperm sequence diversity is encapsulated by 59 CYP families, of which 52 families form a widely distributed core set. In the 20 years since the first plant P450 was sequenced, 3,387 P450 sequences have been identified and annotated in plant databases. As no new angiosperm CYP families have been discovered since 2004, it is now apparent that the sampling of CYP diversity is beginning to plateau. This review presents a comparison of 1,415 cytochrome P450 sequences from the six sequenced genomes of Vitis vinifera (grape), Carica papaya (papaya), Populus trichocarpa (poplar), Oryza sativa (rice), Arabidopsis thaliana (Arabidopsis or mouse ear’s cress) and Physcomitrella patens (moss). An evolutionary analysis is presented that tracks land plant P450 innovation over time from the most ancient and conserved sequences to the newest dicot-specific families. The earliest or oldest P450 families are devoted to the essential biochemistries of sterol and carotenoid synthesis. The next evolutionary radiation of P450 families appears to mediate crucial adaptations to a land environment. And, the newest CYP families appear to have driven the diversity of angiosperms in mediating the synthesis of pigments, odorants, flavors and order-/genus-specific secondary metabolites. Family-by-family comparisons allow the visualization of plant genome plasticity by whole genome duplications and massive gene family expansions via tandem duplications. Molecular evidence of human domestication is quite apparent in the repeated P450 gene duplications occurring in the grape genome.  相似文献   

10.
Ikezawa N  Iwasa K  Sato F 《The FEBS journal》2007,274(4):1019-1035
(S)-stylopine is an important intermediate in the biosynthesis of benzophenanthridine alkaloids, such as sanguinarine. Stylopine biosynthesis involves the sequential formation of two methylenedioxy bridges. Although the methylenedioxy bridge-forming P450 (CYP719) involved in berberine biosynthesis has been cloned from Coptis japonica[Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K & Sato F (2003) J Biol Chem278, 38557-38565], no information is available regarding the genes for methylenedioxy bridge-forming enzymes in stylopine biosynthesis. Two cytochrome P450 cDNAs involved in stylopine biosynthesis were isolated using degenerate primers designed for C. japonica CYP719 from cultured Eschscholzia californica cells. Heterologous expression in Saccharomyces cerevisiae showed that both CYP719A2 and CYP719A3 had stylopine synthase activity to catalyze methylenedioxy bridge-formation from cheilanthifoline to stylopine, but not cheilanthifoline synthase activity to convert scoulerine to cheilanthifoline. Functional differences and expression patterns of CYP719A2 and CYP719A3 were examined to investigate their physiological roles in stylopine biosynthesis. Enzymatic analysis showed that CYP719A2 had high substrate affinity only toward (R,S)-cheilanthifoline, whereas CYP719A3 had high affinity toward three similar substrates (R,S)-cheilanthifoline, (S)-scoulerine, and (S)-tetrahydrocolumbamine. An expression analysis in E. californica plant tissues showed that CYP719A2 and CYP719A3 exhibited expression patterns similar to those of three stylopine biosynthetic genes (CYP80B1, berberine bridge enzyme, and S-adenosyl-l-methionine : 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase), whereas the specific expression of CYP719A3 in root was notable. Treatment of E. californica seedlings with methyl jasmonate resulted in the coordinated induction of CYP719A2 and CYP719A3 genes. The physiological roles of CYP719A2 and CYP719A3 in stylopine biosynthesis are discussed.  相似文献   

11.
Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host/ecological niche can influence shaping the P450 content of an organism. The present study initiates our understanding of P450 family patterns in basidiomycete biotrophic plant pathogens.  相似文献   

12.
The mutagenicity of 44 isoquinoline alkaloids was tested in Salmonella typhimurium TA100 and TA98 in the presence or absence of S9 mix. The alkaloids tested included compounds from the isoquinoline, benzylisoquinoline, bisbenzylisoquinoline, monoterpene isoquinoline, berberine, morphinane, hasubanan, benzo[c]phenanthridine and aporphine groups. Among the alkaloids tested, liriodenine was the most potent mutagen for TA100 and roemerine was the most potent for TA98. A clear structure-mutagenicity relationship was observed in a series of aporphine alkaloids (aporphine, dehydroaporphine, 7-oxoaporphine and 4,5-dioxoaporphine), and 10,11-non-substituted aporphines were suggested to exert their mutagenicity through metabolic activation of the 10,11 positions, possibly as the 10,11-epoxides.  相似文献   

13.
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.  相似文献   

14.
15.
In vertebrates, cytochrome P450s of the CYP2 and CYP3 families play a dominant role in drug metabolism, while in insects members of the CYP6 and CYP28 families have been implicated in metabolism of insecticides and toxic natural plant compounds. A degenerate 3 RACE strategy resulted in the identification of fifteen novel P450s from an alkaloid-resistant species of Drosophila. The strong (17.4-fold) and highly specific induction of a single gene (CYP4D10) by the toxic isoquinoline alkaloids of a commonly utilized host-plant (saguaro cactus) provides the first indication that members of the CYP4 family in insects may play an important role in the maintenance of specific insect-host plant relationships. Strong barbiturate inducibility of CYP4D10 and two other D. mettleri P450 sequences of the CYP4 family was also observed, suggesting a pattern of xenobiotic responsiveness more similar to those of several vertebrate drug-metabolizing enzymes than to putative vertebrate CYP4 homologs. Received: 14 August 1997 / Accepted: 24 March 1998  相似文献   

16.
Alkaloids, which are naturally occurring amines, are biosynthesized and accumulated in plant tissues such as roots, leaves, and stems. Many alkaloids have pharmacological effects on humans and animals. Cytochrome P450 (P450 or CYP) monooxygenases are known to play key roles in the biosynthesis of alkaloids in higher plants. A cDNA clone encoding a P450 protein consisting of 502 amino acids was isolated from Petunia hybrida. The deduced amino acid sequence of the cDNA clone showed a high level of similarity with the other P450 species in the CYP71D family; hence, this novel P450 was named CYP71D14. Among plant P450 species, CYP71D14 had 45.7% similarity in its amino acid sequence to CYP71D12, which is involved in the biosynthesis of the indole alkaloids vinblastine and vincristine. Expression of CYP71D14 mRNA in Petunia plants was examined by Northern blot analysis by using a full-length cDNA of CYP71D14 as a probe. CYP71D14 mRNA was expressed most abundantly in the roots. The nucleotide sequence of CYP71D14 has been submitted to the DDBJ, EMBL, and GenBank nucleotide databases under the accession number AB028462. An erratum to this article can be found at  相似文献   

17.
18.
The fugu (pufferfish) genome has been sequenced, and a second genome assembly was released 17 May 2002. Exhaustive searches were made to identify all P450 genes and pseudogenes from the earlier release of 26 October 2001. P450 genes assembled as completely as possible from these data were used to do additional searches of the newer assembly and all P450 genes and pseudogenes in the available fugu sequence data have been identified, compared to human P450s, and assigned names. There are 54 P450 genes in fugu and 1 nearly intact pseudogene (CYP3A50P). CYP1A is missing much of its N-terminal half; however, 45 P450 genes are completely assembled. Eight others are lacking only one or two exons or less. CYP2X4 is known only from an EST. This may be a 55th P450 gene if it represents an accurate sequence. In addition to 2X4, there are 16 other pseudogene fragments or small pieces of P450 genes. At the P450 family level, 17 of 18 mammalian families are found in fugu. CYP39 is the only CYP family missing and it is not seen in any other fish sequence data either. The CYP2 family shows the largest degree of divergence. In the CYP2 family, only CYP2R1 and CYP2U1 are conserved as recognizable subfamilies across species. Intron-exon boundaries are largely preserved across 420 million years of evolution.  相似文献   

19.
Cytochrome P450 (P450) open reading frames (ORFs) identified in genome sequences of Bacillus species are potential resources for new oxidation biocatalysts. Phylogenetic analysis of 29 Bacillus P450 ORFs revealed that the P450s consist of a limited number of P450 families, CYP102, CYP106, CYP107, CYP109, CYP134, CYP152, and CYP197. Previously, we identified the catalytic activities of three P450s of Bacillus subtilis towards steroids by rapid substrate screening using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). Here, we further applied this method to evaluate the activity of Bacillus cereus P450s towards steroids. Five P450 genes were cloned from B. cereus ATCC 10987 based on its genomic sequence and were expressed in Escherichia coli. These P450s were reacted with a mixture of 30 compounds that mainly included steroids, and the reaction mixtures were analyzed using FT-ICR/MS. We found that BCE_2659 (CYP106) catalyzed the monooxygenation of methyltestosterone, progesterone, 11-ketoprogesterone, medroxyprogesterone acetate, and chlormadinone acetate. BCE_2654 (CYP107) monooxygenated testosterone enanthate, and BCE_3250 (CYP109) monooxygenated testosterone and compactin. Based on the phylogenetic relationship and the known substrate specificities including ones identified in this study, we discuss the catalytic potential of Bacillus P450s towards steroids.  相似文献   

20.
Pyrethroid resistance has been demonstrated in populations of Anopheles funestus from South Africa and southern Mozambique. Resistance is associated with elevated P450 monooxygenase enzymes. In this study, degenerate primers based on conserved regions of Anopheles gambiae P450 CYP4, 6 and 9 families were used to amplify genomic and cDNA templates from A. funestus. A total of 12 CYP4, 12 CYP6 and 7 CYP9 partial genes have been isolated and sequenced. BLAST results revealed that A. funestus P450s generally have a high sequence identity to A. gambiae with above 75% identity at the amino acid level. The exception is CYP9J14. The A. gambiae P450 showing highest identity to CYP9J14 exhibits only 55% identity suggesting that CYP9J14 may have arisen from a recent duplication event. Molecular phylogenetic analysis based on amino acid sequences also supported this hypothesis. Intron positions, but not size, were highly conserved between the two species. The high level of orthology that exists in the P450 gene families of these two species may facilitate the prediction of individual P450 protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号