首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
 A study was conducted to optimize the biodegradation in soil slurries of phenanthrene initially dissolved in nonaqueous-phase liquids (NAPLs). The slow rate of degradation of phenanthrene in dibutyl phthalate was increased by addition of phenanthrene-degrading microorganisms to soil slurries containing the NAPL. The rate was further increased and the acclimation phase was shortened if the inoculum was grown in a medium containing the hydrocarbon and the phthalate before addition to the slurries. Composition of the growth medium only shortened the acclimation but had no effect on the rate. Vigorous agitation increased the rate and extent of mineralization of phenanthrene in dibutyl phthalate. The effect of temperature was affected by the presence and identity of the inoculum. Rapid and extensive mineralization of phenanthrene initially present in hexadecane and diesel oil were attained by use of intense agitation of the NAPL/soil slurry and inoculation with microorganisms grown in the presence of the NAPLs, but the influence of these variables was less with other NAPLs. Vigorous agitation and addition of an inoculum 24 h after introduction of a nonionic surfactant enhanced biodegradation of phenanthrene initially in 150 Bright stock oil and dibutyl phthalate. The results suggest improved means for the bioremediation of sites contaminated with NAPLs. Received: 17 May 1995/Received revision: 1 August 1995/Accepted: 22 August 1995  相似文献   

2.
Bacterial Adhesion to Soil Contaminants in the Presence of Surfactants   总被引:12,自引:2,他引:10       下载免费PDF全文
It has been proposed that addition of surfactants to contaminated soil enhances the solubility of target compounds; however, surfactants may simultaneously reduce the adhesion of bacteria to hydrophobic surfaces. If the latter mechanism is important for the biodegradation of virtually insoluble contaminants, then the use of surfactants may not be beneficial. The adhesion of a Mycobacterium strain and a Pseudomonas strain, isolated from a creosote-contaminated soil, to the surfaces of highly viscous non-aqueous-phase liquids (NAPLs) was measured. The NAPLs were organic material extracted from soils from two creosote-contaminated sites and two petroleum-contaminated sites. Cells suspended in media with and without surfactant were placed in test tubes coated with an NAPL, and the percentages of cells that adhered to the surface of the NAPL in the presence and absence of surfactant were compared by measuring optical density. Test tubes without NAPLs were used as controls. The presence of either Triton X-100 or Dowfax 8390 at a concentration that was one-half the critical micelle concentration (CMC) inhibited adhesion of both species of bacteria to the NAPLs. Both surfactants, when added at concentrations that were one-half the CMCs to test tubes containing previously adhered bacteria, also promoted the removal of the cells from the surfaces of the NAPL-coated test tubes. Neither surfactant was toxic to the bacteria. Further investigation showed that a low concentration of surfactant also inhibited the growth of both species on anthracene, indicating that the presence of a surfactant resulted in a reduction in the uptake of the solid carbon source.  相似文献   

3.
Li JL  Bai R 《Biodegradation》2005,16(1):57-65
Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.  相似文献   

4.
This work develops and utilizes a non-steady-state model for evaluating the interactions between sorption and biodegradation of hydrophobic organic compounds in soil-slurry systems. The model includes sorption/desorption of a target compound, its utilization by microorganisms as a primary substrate existing in the dissolved phase, and/or the sorbed phase in biomass and soil, oxygen transfer, and oxygen utilization as an electron acceptor. Biodegradation tests with phenanthrene were conducted in liquid and soil-slurry systems. The soil-slurry tests were performed with very different mass transfer rates: fast mass transfer in a flask test at 150 rpm, and slow mass transfer in a roller-bottle test at 2 rpm. The results of liquid tests indicate that biodegradation of the soil-soluble organic fraction did not significantly enhance the biodegradation rate. In the slurry tests, phenanthrene was degraded more rapidly than in liquid tests, but at a similar rate in both slurry systems. Modeling analyses with several hypotheses indicate that a model without biodegradation of compound sorbed to the soil was not able to account for the rapid degradation of phenanthrene, particularly in the roller-bottle slurry test. The model with sorbed-phase biodegradation and the same biokinetic parameters, but unique mass transfer coefficients, simulated the experimental data in both slurry tests most successfully. Reduced mass transfer resistance to bacteria attached to the soil is the most likely phenomenon accounting for rapid sorbed-phase biodegradation.  相似文献   

5.
Strains of Moraxella sp., Pseudomonas sp., and Flavobacterium sp. able to grow on biphenyl were isolated from sewage. The bacteria produced 2.3 to 4.5 g of protein per mol of biphenyl carbon, and similar protein yields were obtained when the isolates were grown on succinate. Mineralization of biphenyl was exponential during the phase of exponential growth of Moraxella sp. and Pseudomonas sp. In biphenyl-supplemented media, Flavobacterium sp. had one exponential phase of growth apparently at the expense of contaminating dissolved carbon in the solution and a second exponential phase during which it mineralized the hydrocarbon. Phase-contrast microscopy did not show significant numbers of cells of these three species on the surface of the solid substrate as it underwent decomposition. Pseudomonas sp. did not form products that affected the solubility of biphenyl, although its excretions did increase the dissolution rate. It was calculated that Pseudomonas sp. consumed 29 nmol of biphenyl per ml in the 1 h after the end of the exponential phase of growth, but 32 nmol of substrate per ml went into solution in that period when the growth rate had declined. In a medium with anthracene as the sole added carbon source, Flavobacterium sp. converted 90% of the substrate to water-soluble products, and a slow mineralization was detected when the cell numbers were not increasing. Flavobacterium sp. and Beijerinckia sp. initially grew exponentially and then arithmetically in media with phenanthrene as the sole carbon source. Calculations based on the growth rates of these bacteria and the rates of dissolution of phenanthrene suggest that the dissolution rate of the hydrocarbon may limit the rate of its biodegradation.  相似文献   

6.
Strains of Moraxella sp., Pseudomonas sp., and Flavobacterium sp. able to grow on biphenyl were isolated from sewage. The bacteria produced 2.3 to 4.5 g of protein per mol of biphenyl carbon, and similar protein yields were obtained when the isolates were grown on succinate. Mineralization of biphenyl was exponential during the phase of exponential growth of Moraxella sp. and Pseudomonas sp. In biphenyl-supplemented media, Flavobacterium sp. had one exponential phase of growth apparently at the expense of contaminating dissolved carbon in the solution and a second exponential phase during which it mineralized the hydrocarbon. Phase-contrast microscopy did not show significant numbers of cells of these three species on the surface of the solid substrate as it underwent decomposition. Pseudomonas sp. did not form products that affected the solubility of biphenyl, although its excretions did increase the dissolution rate. It was calculated that Pseudomonas sp. consumed 29 nmol of biphenyl per ml in the 1 h after the end of the exponential phase of growth, but 32 nmol of substrate per ml went into solution in that period when the growth rate had declined. In a medium with anthracene as the sole added carbon source, Flavobacterium sp. converted 90% of the substrate to water-soluble products, and a slow mineralization was detected when the cell numbers were not increasing. Flavobacterium sp. and Beijerinckia sp. initially grew exponentially and then arithmetically in media with phenanthrene as the sole carbon source. Calculations based on the growth rates of these bacteria and the rates of dissolution of phenanthrene suggest that the dissolution rate of the hydrocarbon may limit the rate of its biodegradation.  相似文献   

7.
Physical state of phenanthrene for utilization by bacteria   总被引:22,自引:14,他引:8       下载免费PDF全文
Experiments were done to determine if bacteria able to utilize phenanthrene as a sole source of carbon obtain the hydrocarbon directly from solid phenanthrene particles suspended in the medium or from the phenanthrene dissolved in the medium. Growth experiments were done in gas-tight fermentors completely filled with air-saturated, mineral salts solution with phenanthrene as the substrate. Generation times were determined by rate of oxygen consumption. Generation times were independent of the amount of solid phenanthrene present, and these generation times were the same as the generation time on medium containing only dissolved phenanthrene. It was concluded that bacteria utilize phenanthrene in the dissolved state.  相似文献   

8.
The effects of rhamnolipids produced by Pseudomonas aeruginosa ATCC9027 on the cell surface hydrophobicity (CSH) and the biodegradation of phenanthrene by two thermophilic bacteria, Bacillus subtilis BUM and P. aeruginosa P-CG3, and mixed inoculation of these two strains were investigated. Rhamnolipids significantly reduced the CSH of the hydrophobic BUM and resulted in a noticeable lag period in the biodegradation. However, they significantly increased the CSH and enhanced the biodegradation for the hydrophilic P-CG3. In the absence of rhamnolipids, a mixed inoculation of BUM and P-CG3 removed 82.2% of phenanthrene within 30 days and the major contributor of the biodegradation was BUM (rapid degrader) while the growth of P-CG3 (slow degrader) was suppressed. Addition of rhamnolipids promoted the surfactant-mediated-uptake of phenanthrene by P-CG3 but inhibited the uptake through direct contact by BUM. This resulted in the domination of P-CG3 during the initial stage of biodegradation and enhanced the biodegradation to 92.7%.  相似文献   

9.
Little is known about the interaction of biosurfactants with bacterial cells. Recent work in the area of biodegradation suggests that there are two mechanisms by which biosurfactants enhance the biodegradation of slightly soluble organic compounds. First, biosurfactants can solubilize hydrophobic compounds within micelle structures, effectively increasing the apparent aqueous solubility of the organic compound and its availability for uptake by a cell. Second, biosurfactants can cause the cell surface to become more hydrophobic, thereby increasing the association of the cell with the slightly soluble substrate. Since the second mechanism requires very low levels of added biosurfactant, it is the more intriguing of the two mechanisms from the perspective of enhancing the biodegradation process. This is because, in practical terms, addition of low levels of biosurfactants will be more cost-effective for bioremediation. To successfully optimize the use of biosurfactants in the bioremediation process, their effect on cell surfaces must be understood. We report here that rhamnolipid biosurfactant causes the cell surface of Pseudomonas spp. to become hydrophobic through release of lipopolysaccharide (LPS). In this study, two Pseudomonas aeruginosa strains were grown on glucose and hexadecane to investigate the chemical and structural changes that occur in the presence of a rhamnolipid biosurfactant. Results showed that rhamnolipids caused an overall loss in cellular fatty acid content. Loss of fatty acids was due to release of LPS from the outer membrane, as demonstrated by 2-keto-3-deoxyoctonic acid and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and further confirmed by scanning electron microscopy. The amount of LPS loss was found to be dependent on rhamnolipid concentration, but significant loss occurred even at concentrations less than the critical micelle concentration. We conclude that rhamnolipid-induced LPS release is the probable mechanism of enhanced cell surface hydrophobicity.  相似文献   

10.
Little is known about the interaction of biosurfactants with bacterial cells. Recent work in the area of biodegradation suggests that there are two mechanisms by which biosurfactants enhance the biodegradation of slightly soluble organic compounds. First, biosurfactants can solubilize hydrophobic compounds within micelle structures, effectively increasing the apparent aqueous solubility of the organic compound and its availability for uptake by a cell. Second, biosurfactants can cause the cell surface to become more hydrophobic, thereby increasing the association of the cell with the slightly soluble substrate. Since the second mechanism requires very low levels of added biosurfactant, it is the more intriguing of the two mechanisms from the perspective of enhancing the biodegradation process. This is because, in practical terms, addition of low levels of biosurfactants will be more cost-effective for bioremediation. To successfully optimize the use of biosurfactants in the bioremediation process, their effect on cell surfaces must be understood. We report here that rhamnolipid biosurfactant causes the cell surface of Pseudomonas spp. to become hydrophobic through release of lipopolysaccharide (LPS). In this study, two Pseudomonas aeruginosa strains were grown on glucose and hexadecane to investigate the chemical and structural changes that occur in the presence of a rhamnolipid biosurfactant. Results showed that rhamnolipids caused an overall loss in cellular fatty acid content. Loss of fatty acids was due to release of LPS from the outer membrane, as demonstrated by 2-keto-3-deoxyoctonic acid and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and further confirmed by scanning electron microscopy. The amount of LPS loss was found to be dependent on rhamnolipid concentration, but significant loss occurred even at concentrations less than the critical micelle concentration. We conclude that rhamnolipid-induced LPS release is the probable mechanism of enhanced cell surface hydrophobicity.  相似文献   

11.
 The mechanism of phenanthrene transfer to the bacteria during biodegradation by a Pseudomonas strain was investigated using a sensitive respirometric technique (Sapromat equipment) allowing the quasi-continuous acquisition of data on oxygen consumption. Several systems of phenanthrene supply, crystalline solid and solutions in non-water-miscible solvents (silicone oil and 2,2,4,4,6,8,8-heptamethylnonane) were studied. In all cases, analysis of the kinetics of oxygen consumption demonstrated an initial phase of exponential growth with the same specific growth rate. In order to analyze the second phase of growth and phenanthrene degradation, a study of the kinetics of phenanthrene transfer to the aqueous phase was conducted by direct experimentation, with the crystal and silicone oil systems, in abiotic conditions. The data allowed the validation of a model based on phase-transfer laws, describing the variations, with substrate concentrations, of rates of phenanthrene transfer to the aqueous phase. Analysis of the biodegradation curves then showed that exponential growth ended in all cases when the rates of phenanthrene consumption reached the maximal transfer rates. Thereafter, the biodegradation rates closely obeyed, for all systems, the transfer rate values given by the model. These results unambiguously demonstrated that, in the present case, phenanthrene biodegradation required prior transfer to the aqueous phase. With the silicone oil system, which allowed high transfer and biodegradation rates, phenanthrene was directed towards higher metabolite production and lower mineralization, as shown by oxygen consumption and carbon balance determinations. Received: 30 November 1994/Accepted: 11 January 1995  相似文献   

12.
The influence of sorption of bacteria, as well as 2,4-dichlorophenol (2,4-DCP), on themineralization of 100 g l-1 of the organic compound was examined in an aquifer material under advective flow conditions (column displacement technique). The study was designed to distinguish the rates and extent of biodegradation of the sorbed and the dissolved trace organic and the contribution of sorbed and suspended bacteria to the degradation. The degradation of dissolved 2,4-DCP was significantly faster thanthe degradation of the same compound sorbed to the solids, and suspended bacteriadegraded the dissolved compound at a higher rate than sorbed bacteria, also on a percell basis. The suspended bacteria degraded 8–12% of the added dissolved 2,4-DCP, while sorbed bacteria made a smaller contribution by degrading about 5% of sorbed 2,4-DCP. No degradation was seen with sorbed 2,4-DCP and suspended bacteria, and a marginal contribution was made by sorbed bacteria on the degradation of dissolved 2,4-DCP (<0.4%).  相似文献   

13.
A rotating disk apparatus was used to investigate the biodegradation of PAHs from non-aqueous phase liquids to solutions of Brij 35. The mass transfer of PAHs in absence of surfactant solution was not large enough to replenish the degraded PAHs. The addition of surfactant resulted in an overall enhancement of biodegradation rates compared to that observed in pure aqueous solution. This is because surfactant partition significant amount of PAHs into the bulk phase, where uptake occurs but the supply of PAHs to the aqueous phase through micellar solubilization at latter period limited biodegradation rates. It was demonstrated the relationship between biodegradation rate and surfactant dose and the mechanisms controlling the mass transfer of PAH from NAPLs. The satisfactory comparison of the experimental data with the predictions of a model, which parameters were determined from independent solubilization and dissolution experiments and based on the main assumption that the solutes must be present in the true aqueous phase to be degraded, allows us to conclude the absence of direct uptake of PAHs by bacteria.  相似文献   

14.
A simple screening method was developed to detect in situ biosurfactant production by exploiting the relationship between surface tension (ST) and surfactant concentration. Filtered groundwater from contaminated wells with ST values of 60 to 70 dynes/cm decreased to 29 dynes/cm after being concentrated 10 to 15 times in a rotary evaporator, indicating that biosurfactants in the sample reached the critical micelle concentration (CMC). Samples from uncon-taminated groundwater concentrated 25 times showed no decrease in ST below 72 dynes/cm, suggesting that biosurfactants were not present. Microorganisms from soil cores were cultured on diesel fuel and identified using fatty acid methyl ester (FAME) analysis. Pseudomonas aeruginosa was found at very low numbers in uncontami-nated soil but was the dominant species in contaminated soil, indicating that hydrocarbon release impacted microbial diversity significantly. High-performance liquid chromatography (HPLC) was used to quantify rhamnolipids, biosurfactants produced by P. aeruginosa, in concentrated ground-water samples. Rhamnolipid concentrations in samples from contaminated soil were observed equal to their CMC (50 mg/L), but were not detected in samples from un-contaminated wells. We conclude that biosurfactant production may be an indicator of intrinsic bioremediation.  相似文献   

15.
Degradation of phenanthrene byPseudomonas aeruginosa AK1 was examined in (i) an aqueous mineral salts medium to which phenanthrene particles of varying size (i.e. diameter) were added, and (ii) an aqueous/organic biphasic culture system consisting of mineral salts medium supplemented with 2,2,4,4,6,8,8-heptamethylnonane (HMN) as the phenanthrene-carrying organic phase. In both systems, the rate of phenanthrene biodegradation could be significantly enhanced by manipulations leading to improved phenanthrene mass transfer into the aqueous phase. With crystalline phenanthrene, the rate of biodegradation was found to be directly correlated to the particle surface area, whereas in the biphasic system the rate of biodegradation of the dissolved phenanthrene was mainly governed by the HMN/water interface area. In the latter system, exponential growth with a doubling time t d of 6–8 hours has been achieved under conditions of intensive agitation of the medium indicating that phenanthrene degradation by strain AK1 is limited mainly by physicochemical parameters. Addition of selected surfactants to the culture medium was found to accelerate phenanthrene degradation by strain AK1 only under conditions of low agitation (in the presence of HMN) and after pretreatment of phenanthrene crystals by ultrasonication (in the absence of HMN). Evidence is presented that the stimulating effect of the surfactants was primarily due to improved dispersion of phenanthrene particle agglomerates (in the aqueous mineral salts medium supplemented with phenanthrene crystals) or of the phenanthrene-carrying lipophilic solvent drops (in the aqueous/organic biphasic culture system) whereas the solubilizing activity towards phenanthrene was neglectible. Under conditions of intensive mixing of the culture medium (i.e. if a high particle surface area or HMN/water interface area, respectively, is provided), the addition of surfactants did not enhance phenanthrene biodegradation.  相似文献   

16.
The degradation by a consortium of slightly-halophile marine bacteria of styrene initially dissolved in silicone oil was monitored in batch reactors stirred at 75, 125 and 500 rpm, respectively. In the 75 and 125 rpm cases, the styrene biodegradation rate was higher than the rate of spontaneous partitioning of styrene from the oil to the water, determined under abiotic conditions. Abiotic transfer tests carried out after biodegradation runs revealed that bacterial activity had resulted in a significant increase in the rate of styrene partitioning between the two liquid phases. Even though bacterial adsorption was noticeable at the oil-water interface, this effect appeared to be due to the release by the bacteria of chemicals in the aqueous phase. Similarity with observations made with Triton X-100 suggested that the chemicals released may have been biosurfactants or solubilizing agents.  相似文献   

17.
In published literature there are limited studies on the estimation of kinetic parameters of polycyclic aromatic hydrocarbons (PAHs) in soil. In addition, neither the kinetic studies were performed with Gram-positive bacteria nor conducted under non-indigenous condition in order to understand their removal performance. Thus, a mathematical model describing biodegradation of phenanthrene-contaminated soil by Corynebacterium urealyticum, bacterium isolated from municipal sludge, was developed in this study. The model includes three kinetic parameters that were determined using TableCurve 2D software, namely qmax (maximum substrate utilization rate per unit mass of bacteria), X (biomass concentration) and Ks (substrate concentration at one half the maximum substrate utilization rate). These parameters were evaluated and verified in five different initial phenanthrene concentrations. Highest degradation rate was determined to be 79.24 mg kg?1 day?1 at 500 mg kg?1 initial phenanthrene concentrations. This high concentration shows that bacteria perform better in contaminated sand compared to liquid media. High r2 values, ranging from 0.92 to 0.99, were obtained excluding 1000 mg/kg phenanthrene. The kinetic parameters, i.e., qmax and Ks, increased with the phenanthrene concentration and thus suggest that bacteria degrade at a higher degradation rate. This model successfully described the biodegradation profiles observed at different initial phenanthrene concentrations. The established model can be used to simulate the duration of phenanthrene degradation using only the value of the initial PAHs concentration.  相似文献   

18.
A study was conducted to find means of enhancing the biodegradation of hydrophobic organic compounds in nonaqueous-phase liquids (NAPLs). The effects of surfactants, identity of the NAPL and agitation was investigated. When present in NAPLs, phenanthrene, di-(2-ethylhexyl) phthalate (DEHP) and biphenyl were mineralized slowly in soil. Addition of Triton X-100 or Alfonic 810-60 did not enhance the degradation of phenanthrene initially in hexadecane or dibutyl phthalate. Slurrying the soil increased the rate and extent of mineralization of phenanthrene initially in hexadecane but not in dibutyl phthalate. Addition of either of the two surfactants to the slurries did not promote the transformation. Triton X-100, Alfonic 810-60 and Tergitol 15-S-9 below their critical micelle concentrations increased the rate and sometimes the extent of mineralization in soil slurries of phenanthrene initially in 2,2,4,4,6,8,8-heptamethylnonane, but other surfactants were not stimulatory. Slurrying the soil promoted the initial mineralization of DEHP initially in dibutyl phthalate, and Alfonic 810-60 and Triton X-100 further stimulated the rate and extent of degradation in the slurries. Alfonic 810-60 increased the extent of mineralization in slurries of biphenyl in hexadecane but not in dibutyl phthalate, cyclohexane, kerosene or two oils. Little mineralization of biphenyl or DEHP initially in dibutyl phthalate occurred in soil slurries, but Tween 80, Tergitol 15-S-40 and Tergitol 15-S-9 increased the extent of mineralization. However, vigorous agitation of the slurries of soil acclimated to DEHP or the use of small volumes of the NAPL resulted in marked enhancement of the degradation. Thus, biodegradation of constituents of NAPLs in soil can be increased by the use of some surfactants, slurrying or intense agitation, but the effect will vary with the NAPL and the constituents.  相似文献   

19.
The capacity of polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria to produce biosurfactants was investigated. Twenty-three bacteria isolated from a soil contaminated with petroleum wastes were able to form clearing zones on mineral salt agar plates sprayed with solutions of PAHs. Naphthalene and phenanthrene were utilized as sole substrates. Biosurfactant production was detected by surface tension lowering and emulsifying activities from 10 of these strains grown in an iron-limited salt medium supplemented with high concentrations of dextrose or mannitol, as well as with naphthalene or phenanthrene. Glycolipid determinations showed that in cultures of Pseudomonas aeruginosa 19SJ on naphthalene, the maximal productivity of biosurfactants was delayed compared with that in cultures grown on mannitol. However, when small amounts of biosurfactants and naphthalene degradation intermediates were present at the onset of the cultivation, the delay was markedly shortened. Production of biosurfactants was accompanied by an increase in the aqueous concentration of naphthalene, indicating that the microorganism was promoting the solubility of its substrate. Detectable amounts of glycolipids were also produced on phenanthrene. This is the first report of biosurfactant production resulting from PAH metabolism.  相似文献   

20.
The presence of the synthetic nonionic surfactants Triton X-100, Tergitol NPX, Brij 35, and Igepal CA-720 resulted not only in increased apparent solubilities but also in increased maximal rates of dissolution of crystalline naphthalene and phenanthrene. A model based on the assumption that surfactant micelles are formed and act as a separate phase underestimated the dissolution rates; this led to the conclusion that surfactants present at concentrations higher than the critical micelle concentration affect the dissolution process. This conclusion was confirmed by the results of batch growth experiments, which showed that the rates of biodegradation of naphthalene and phenanthrene in the dissolution-limited growth phase were increased by the addition of surfactant, indicating that the dissolution rates were higher than the rates in the absence of surfactant. In activity and growth experiments, no toxic effects of the surfactants at concentrations up to 10 g liter(sup-1) were observed. Substrate present in the micellar phase was shown to be not readily available for degradation by the microorganisms. This finding has important consequences for the application of (bio)surfactants in biological soil remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号