首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O(2) uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased (P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 +/- 0.07; NA, 0.10 +/- 0.01 mM). The decreased plasma FFA during NA was associated with decreased (P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 +/- 2.5, NA: 9.1 +/- 3.0 nmol.min(-1).mg protein(-1)). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 +/- 0.8; NA, 6.3 +/- 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 +/- 0.07; 180 min: 0.17 +/- 0.04 nmol.min(-1).mg protein(-1)). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)alpha1 activity was not affected by exercise or NA, whereas AMPKalpha2 activity was increased (P < 0.05) from rest during exercise in NA and was greater (P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.  相似文献   

2.
This study investigates the consequences of inhibition of adipose tissue lipolysis on skeletal muscle substrate use. Ten subjects were studied at rest and during exercise and subsequent recovery under normal, fasting conditions (control trial, CON) and following administration of a nicotinic acid analog (low plasma free fatty acid trial, LFA). Continuous [U-13C]palmitate and [6,6-2H2]glucose infusions were applied to quantify plasma free fatty acid (FFA) and glucose oxidation rates and to estimate intramuscular triacylglycerol (IMTG) and glycogen use. Muscle biopsies were collected to measure 1) fiber type-specific IMTG content; 2) allosteric regulators of hormone-sensitive lipase (HSL), glycogen phosphorylase, and pyruvate dehydrogenase; and 3) the phosphorylation status of HSL at Ser563 and Ser565. Administration of a nicotinic acid analog (acipimox) substantially reduced plasma FFA rate of appearance and subsequent plasma FFA concentrations (P < 0.0001). At rest, this substantially reduced plasma FFA oxidation rates, which was compensated by an increase in the estimated IMTG use (P < 0.05). During exercise, the progressive increase in FFA rate of appearance, uptake, and oxidation was prevented in the LFA trial and matched by greater IMTG and glycogen use. Differential phosphorylation of HSL or relief of its allosteric inhibition by long-chain fatty acyl-CoA could not explain the increase in muscle TG use, but there was evidence to support the contention that regulation may reside at the level of the glucose-fatty acid cycle. This study confirms the hypothesis that plasma FFA availability regulates both intramuscular lipid and glycogen use in vivo in humans.  相似文献   

3.
The ability of growth hormone (GH) to stimulate lipolysis and cause insulin resistance in skeletal muscle may be causally linked, but the mechanisms remain obscure. We investigated the impact of GH on the turnover of FFA and VLDL-TG, intramuscular triglyceride content (IMTG), and insulin sensitivity (euglycemic clamp) in nine healthy men in a randomized double-blind placebo-controlled crossover study after 8 days treatment with (A) Placebo+Placebo, (B) GH (2 mg daily)+Placebo, and (C) GH (2 mg daily)+Acipimox (250 mgx3 daily). In the basal state, GH (B) increased FFA levels (P<0.05), palmitate turnover (P<0.05), and lipid oxidation (P=0.05), but VLDL-TG kinetics were unaffected. Administration of acipimox (C) suppressed basal lipolysis but did not influence VLDL-TG kinetics. In the basal state, IMTG content increased after GH (B; P=0.03). Insulin resistance was induced by GH irrespective of concomitant acipimox (P<0.001). The turnover of FFA and VLDL-TG was suppressed by hyperinsulinemia during placebo and GH, whereas coadministration of acipimox induced a rebound increase FFA turnover and VLDL-TG clearance. We conclude that these results show that GH-induced insulin resistance is associated with increased IMTG and unaltered VLDL-TG kinetics; we hypothesize that fat oxidation in muscle tissue is an important primary effect of GH and that circulating FFA rather than VLDL-TG constitute the major source for this process; and the role of IMTG in the development of GH-induced insulin resistance merits future research.  相似文献   

4.
We have recently reported that, during moderate intensity exercise, low muscle glycogen concentration and utilization caused by a high-fat diet is associated with a marked increase in fat oxidation with no effect on plasma glucose uptake (R(d) glucose). It is our hypothesis that this increase in fat oxidation compensates for low muscle glycogen, thus preventing an increase in R(d) glucose. Therefore, the purpose of this study was to determine whether low muscle glycogen availability increases R(d) glucose under conditions of impaired fat oxidation. Six cyclists exercised at 50% peak O(2) consumption (Vo(2 peak)) for 1 h after 2 days on either a high-fat (HF, 60% fat, 24% carbohydrate) or control (CON, 22% fat, 65% carbohydrate) diet to manipulate muscle glycogen to low and normal levels, respectively. Two hours before the start of exercise, subjects ingested 80 mg of propanolol (betaB), a nonselective beta-adrenergic receptor blocker, to impair fat oxidation during exercise. HF significantly decreased calculated muscle glycogen oxidation (P < 0.05), and this decrease was partly compensated for by an increase in fat oxidation (P < 0.05), accompanied by an increase in whole body lipolysis (P < 0.05), despite the presence of betaB. Although HF increased fat oxidation, plasma glucose appearance rate, R(d) glucose, and glucose clearance rate were also significantly increased by 13, 15, and 26%, respectively (all P < 0.05). In conclusion, when lipolysis and fat oxidation are impaired, in this case by betaB, fat oxidation cannot completely compensate for a reduction in muscle glycogen utilization, and consequently plasma glucose turnover increases. These findings suggest that there is a hierarchy of substrate compensation for reduced muscle glycogen availability after a high-fat, low-carbohydrate diet, with fat being the primary and plasma glucose the secondary compensatory substrate. This apparent hierarchy likely serves to protect against hypoglycemia when endogenous glucose availability is low.  相似文献   

5.
The purpose of the present study was to determine the effects of diet composition and exercise on glycerol and glucose appearance rate (Ra) and on nonglycerol gluconeogenesis (Gneo) in vivo. Male Wistar rats were fed a high-starch diet (St, 68% of energy as cornstarch, 12% corn oil) for a 2-wk baseline period and then were randomly assigned to one of four experimental groups: St (n = 7), high-fat (HF; 35% cornstarch, 45% corn oil; n = 8), St with free access to exercise wheels (StEx; n = 7), and HF with free access to exercise wheels (HFEx; n = 7). After 8 wk, glucose Ra when using [3-3H]glucose, glycerol Ra when using [2H5]glycerol (estimate of whole body lipolysis), and [3-13C]alanine incorporation into glucose (estimate of alanine Gneo) were determined. Body weight and fat pad mass were significantly (P < 0.05) decreased in exercise vs. sedentary animals only. The average amount of exercise was not significantly different between StEx (3,212 +/- 659 m/day) and HFEx (3,581 +/- 765 m/day). The ratio of glucose to alanine enrichment and absolute glycerol Ra (micromol/min) were higher (P < 0.05) in HF and HFEx compared with St and StEx rats. In separate experiments, the ratio of 3H in C-2 to C-6 of glucose from 3H2O (estimate of Gneo from pyruvate) was also higher (P < 0.05) in HF (n = 5) and HFEx (n = 5), compared with St (n = 5) and StEx (n = 5) rats. Voluntary wheel running did not significantly increase estimated alanine or pyruvate Gneo or absolute glycerol Ra. Voluntary wheel running increased (P < 0.05) glycerol Ra when normalized to fat pad mass. These data suggest that a high-fat diet can increase in vivo Gneo from precursors that pass through pyruvate. They also suggest that changes in the absolute rate of glycerol Ra may contribute to the high-fat diet-induced increase in Gneo.  相似文献   

6.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

7.
We used beta-adrenergic receptor stimulation and blockade as a tool to study substrate metabolism during exercise. Eight moderately trained subjects cycled for 60 min at 45% of VO(2 peak) 1) during a control trial (CON); 2) while epinephrine was intravenously infused at 0.015 microg. kg(-1) x min(-1) (beta-STIM); 3) after ingesting 80 mg of propranolol (beta-BLOCK); and 4) combining beta-BLOCK with intravenous infusion of Intralipid-heparin to restore plasma fatty acid (FFA) levels (beta-BLOCK+LIPID). beta-BLOCK suppressed lipolysis (i.e., glycerol rate of appearance) and fat oxidation while elevating carbohydrate oxidation above CON (135 +/- 11 vs. 113 +/- 10 micromol x kg(-1) x min(-1); P < 0.05) primarily by increasing rate of disappearance (R(d)) of glucose (36 +/- 2 vs. 22 +/- 2 micromol x kg(-1) x min(-1); P < 0.05). Plasma FFA restoration (beta-BLOCK+LIPID) attenuated the increase in R(d) glucose by more than one-half (28 +/- 3 micromol x kg(-1) x min(-1); P < 0.05), suggesting that part of the compensatory increase in muscle glucose uptake is due to reduced energy from fatty acids. On the other hand, beta-STIM markedly increased glycogen oxidation and reduced glucose clearance and fat oxidation despite elevating plasma FFA. Therefore, reduced plasma FFA availability with beta-BLOCK increased R(d) glucose, whereas beta-STIM increased glycogen oxidation, which reduced fat oxidation and glucose clearance. In summary, compared with control exercise at 45% VO(2 peak) (CON), both beta-BLOCK and beta-STIM reduced fat and increased carbohydrate oxidation, albeit through different mechanisms.  相似文献   

8.
We determined whether a low-fat diet reduces intramuscular triglyceride (IMTG) concentration, whole body lipolyis, total fat oxidation, and calculated nonplasma fatty acid (FA) oxidation during exercise. Seven endurance-trained cyclists were studied over a 3-wk period during which time they exercised 2 h/day at 70% of maximum O2 uptake VO(2 max) and consumed approximately 4,400 kcal/day. During the 1st wk, their fat intake provided 32% of energy. During the 2nd and 3rd wk, they were randomly assigned to eat 2 or 22% of energy from fat (2%FAT or 22%FAT). Compared with 22%FAT, 2%FAT lowered IMTG concentration and raised muscle glycogen concentration at rest (P < 0.05). Metabolism was studied during 1 h of exercise at 67% VO(2 max) performed in the fasted state. 2%FAT resulted in a 27% reduction (P < 0.05) in total fat oxidation vs. 22%FAT without altering the stable isotopically determined rates of plasma free fatty acid or glucose disappearance. Therefore, 2%FAT reduced calculated nonplasma FA oxidation by 40% in association with a 19% reduction in whole body lipolysis while increasing calculated minimal muscle glycogen oxidation compared with 22%FAT (all P < 0.05). In summary, an extremely low fat (2% of energy) and high-carbohydrate diet lowers whole body lipolysis, total fat oxidation, and nonplasma FA oxidation during exercise in the fasted state in association with a reduced concentration of intramuscular triglyceride.  相似文献   

9.
The aim of the present study was to investigate the influence of substrate availability on fuel selection during exercise. Eight endurance-trained male cyclists performed 90-min exercise at 70 % of their maximal oxygen uptake in a cross-over design, either in rested condition (CON) or the day after 2-h exercise practised at 70 % of maximal oxygen uptake (EX). Subjects were given a sucrose load (0.75 g kg?1 body weight) 45 min after the beginning of the 90-min exercise test. Lipolysis was measured in subcutaneous abdominal adipose tissue (SCAT) by microdialysis and substrate oxidation by indirect calorimetry. Lipid oxidation increased during exercise and tended to decrease during sucrose ingestion in both conditions. Lipid oxidation was higher during the whole experimental period in the EX group (p?=?0.004). Interestingly, fuel selection, assessed by the change in respiratory exchange ratio (RER), was increased in the EX session (p?=?0.002). This was paralleled by a higher rate of SCAT lipolysis reflected by dialysate glycerol, plasma glycerol, and fatty acids (FA) levels (p?<?0.001). Of note, we observed a significant relationship between whole-body fat oxidation and dialysate glycerol in both sessions (r 2?=?0.33, p?=?0.02). In conclusion, this study highlights the limiting role of lipolysis and plasma FA availability to whole-body fat oxidation during exercise in endurance-trained subjects. This study shows that adipose tissue lipolysis is a determinant of fuel selection during exercise in healthy subjects.  相似文献   

10.
In previous work using prolonged, light cycle exercise, we were unable to demonstrate an effect of acute plasma volume (PV) expansion on glucose kinetics or substrate oxidation, despite a decline in whole-body lipolysis (Phillips et al., 1997). However, PV is known to decrease arterial O2 content. The purpose of this study was to examine whether substrate turnover and oxidation would be altered with heavier exercise where the challenge to O2 delivery is increased. Eight untrained males (VO2max = 3.52 +/- 0.12 l/min) twice performed 90 min of cycle ergometry at 62 % VO2peak, both prior to (CON) and following induced plasma volume expansion (Dextran [6 %] or Pentaspan [10 %]) (6.7 ml/kg) (PVX). Glucose and glycerol kinetics were determined with primed constant infusions of [6.6-(2)H2] glucose and [(2)H5] glycerol, respectively. PVX resulted in a 15.8 +/- 2.2 % increase (p < 0.05) in PV. Glucose and glycerol appearance (Ra) and utilization (Rd), although increasing progressively (p < 0.05) with exercise, were not different between conditions. Similarly, no differences in substrate oxidation, either fat or carbohydrate, were observed between the two conditions. Prolonged exercise resulted in an increase (p < 0.05) in plasma glucagon and a decrease (p < 0.05) in plasma insulin during both conditions. With PVX, the exercise-induced increase in glucagon was diminished (p < 0.05). We conclude that impairment in O2 content mediated by an elevated PV does not alter glucose, and glycerol kinetics or substrate oxidation even at moderate exercise intensity.  相似文献   

11.
We evaluated lipid metabolism during 90 min of moderate-intensity (50% VO(2) peak) cycle ergometer exercise in five men and five women who were matched on adiposity (24 +/- 2 and 25 +/- 1% body fat, respectively) and aerobic fitness (VO(2) peak: 49 +/- 2 and 47 +/- 1 ml x kg fat-free mass(-1) x min(-1), respectively). Substrate oxidation and lipid kinetics were measured by using indirect calorimetry and [(13)C]palmitate and [(2)H(5)]glycerol tracer infusion. The total increase in glycerol and free fatty acid (FFA) rate of appearance (R(a)) in plasma during exercise (area under the curve above baseline) was approximately 65% greater in women than in men (glycerol R(a): 317 +/- 40 and 195 +/- 33 micromol/kg, respectively; FFA R(a): 652 +/- 46 and 453 +/- 70 micromol/kg, respectively; both P < 0.05). Total fatty acid oxidation was similar in men and women, but the relative contribution of plasma FFA to total fatty acid oxidation was higher in women (76 +/- 5%) than in men (46 +/- 5%; P < 0.05). We conclude that lipolysis of adipose tissue triglycerides during moderate-intensity exercise is greater in women than in men, who are matched on adiposity and fitness. The increase in plasma fatty acid availability leads to a greater rate of plasma FFA tissue uptake and oxidation in women than in men. However, total fat oxidation is the same in both groups because of a reciprocal decrease in the oxidation rate of fatty acids derived from nonplasma sources, presumably intramuscular and possibly plasma triglycerides, in women.  相似文献   

12.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerol (IMTG); however, its regulation in skeletal muscle is poorly understood. To examine the effects of reduced free fatty acid (FFA) availability on HSL activity in skeletal muscle during aerobic exercise, 11 trained men exercised at 55% maximal O2 uptake for 40 min after the ingestion of nicotinic acid (NA) or nothing (control). Muscle biopsies were taken at rest and 5, 20, and 40 min of exercise. Plasma FFA were suppressed (P < 0.05) in NA during exercise ( approximately 0.40 +/- 0.04 vs. approximately 0.07 +/- 0.01 mM). The respiratory exchange ratio (RER) was increased throughout exercise (0.020 + 0.008) after NA ingestion. However, the provision of energy from fat oxidation only decreased from 33% of the total in the control trial to 26% in the NA trial, suggesting increased IMTG oxidation in the NA trial. Mean HSL activity was 2.25 + 0.15 mmol x kg dry mass(-1) x min(-1) at rest and increased (P < 0.05) to 2.94 +/- 0.20 mmol x kg dry mass(-1) x min(-1) at 5 min in control. Contrary to the hypothesis, mean HSL was not activated to a greater extent in the NA trial during exercise (2.20 + 0.28 at rest to 2.88 + 0.21 mmol x kg dry mass(-1) x min(-1) at 5 min). No further HSL increases were observed at 20 or 40 min in both trials. There was variability in the response to NA ingestion, as some subjects experienced a large increase in RER and decrease in fat oxidation, whereas other subjects experienced no shift in RER and maintained fat oxidation despite the reduced FFA availability in the NA trial. However, even in these subjects, HSL activity was not further increased during the NA trial. In conclusion, reduced plasma FFA availability accompanied by increased epinephrine concentration did not further activate HSL beyond exercise alone.  相似文献   

13.
The acute in vitro and in vivo effects of long-chain fatty acids (LCFAs) on the regulation of adrenergic lipolysis were investigated in human adipose tissue. The effect of a 2 h incubation, without or with LCFA (200 mumol/l), on basal and hormonally induced lipolysis was tested in vitro on isolated fat cells. The lipolytic response to epinephrine was enhanced by suppression of the antilipolytic alpha(2)-adrenergic effect. Then, healthy lean and obese male subjects performed a 45 min exercise bout at 50% of their heart rate reserve either after an overnight fast or 3 h after a high-fat meal (HFM: 95% fat, 5% carbohydrates). Subcutaneous adipose tissue lipolysis was measured by microdialysis in the presence or absence of an alpha-antagonist (phentolamine). In vivo, a HFM increased plasma levels of nonesterified fatty acids in lean and obese subjects. In both groups, the HFM did not alter hormonal responses to exercise. Under fasting conditions, the alpha(2)-adrenergic antilipolytic effect was more pronounced in obese than in lean subjects. The HFM totally suppressed the alpha(2)-adrenergic antilipolytic effect in lean and obese subjects during exercise. LCFAs per se, in vitro as well as in vivo, suppress alpha(2)-adrenergic-mediated antilipolysis in adipose tissue. LCFA-mediated suppression of antilipolytic pathways represents another mechanism whereby a high fat content in the diet might increase adipose tissue lipolysis.  相似文献   

14.
Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of FFA reesterification are carried out before FFA release into plasma, whereas the rest consists of plasma FFA extracted by adipose tissue. Thirty-six percent of the fasting lipolytic flux is accounted for by oxidation of plasma FFA, whereas only a minor fraction is channeled into hepatic very low density lipoprotein-triglycerides (VLDL-TG). Total body calorigenesis induced by thyroid hormone treatment and liver-specific calorigenesis induced by treatment with beta, beta'-tetramethylhexadecanedioic acid (Medica 16) are characterized by a 1.7- and 1.3-fold increase in FFA oxidation, respectively, maintained by a 1.5-fold increase in adipose fat lipolysis. Hepatic reesterification of plasma FFA into VLDL-TG is negligible under both calorigenic conditions. Hence, total body fatty acid metabolism is regulated by adipose tissue as both source and sink. The futile nature of fatty acid cycling allows for its fine tuning in response to metabolic demands.  相似文献   

15.
To determine whether IL-6 increases lipolysis and fat oxidation in patients with type 2 diabetes and/or whether it exerts this effect independently of changes to the hormonal milieu, patients with type 2 diabetes (D) and healthy control subjects (CON) underwent recombinant human (rh)IL-6 infusion for 3 h. Rates of appearance (Ra) and disappearance (Rd) of [U-(13C)]palmitate and [6,6-(2H2)]glucose were determined. rhIL-6 infusion increased (P < 0.05) palmitate Ra and Rd in a similar fashion in both groups. Neither plasma glucose concentration nor glucose Ra/Rd was affected by rhIL-6 infusion in either group, whereas rhIL-6 infusion resulted in a reduction (P < 0.05) in circulating insulin in D. Plasma growth hormone (GH) was increased (P < 0.05) by IL-6 in CON, and cortisol increased (P < 0.05) in response to IL-6 in both groups. To determine whether IL-6 was exerting its effect directly or through activation of these hormones, we performed cell culture experiments. Fully differentiated 3T3-L1 adipocytes were treated with PBS (control) IL-6, or IL-6 plus dexamethasone and GH. IL-6 treatment alone increased (P < 0.05) lipolysis, but this effect was reduced by the addition of dexamethasone and GH such that IL-6 plus dexamethasone and GH had blunted (P < 0.05) lipolysis compared with IL-6 alone. To assess whether IL-6 increases fat oxidation, L6 myotubes were treated with PBS (Control), IL-6, or AICAR, a compound known to increase lipid oxidation. Both IL-6 and AICAR markedly increased (P < 0.05) oxidation of [(14)C]palmitate compared with Control. Acute IL-6 treatment increased fatty acid turnover in D patients as well as healthy CON subjects. Moreover, IL-6 appears to be activating lipolysis independently of elevations in GH and/or cortisol and appears to be a potent catalyst for fat oxidation in muscle cells.  相似文献   

16.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

17.
There is substantial evidence in the literature that elevated plasma free fatty acids (FFA) play a role in the pathogenesis of type 2 diabetes. CVT-3619 is a selective partial A(1) adenosine receptor agonist that inhibits lipolysis and lowers circulating FFA. The present study was undertaken to determine the effect of CVT-3619 on insulin resistance induced by high-fat (HF) diet in rodents. HF diet feeding to rats for 2 wk caused a significant increase in insulin, FFA, and triglyceride (TG) concentrations compared with rats fed chow. CVT-3619 (1 mg/kg) caused a time-dependent decrease in fasting insulin, FFA, and TG concentrations. Acute administration of CVT-3619 significantly lowered the insulin response, whereas glucose response was not different with an oral glucose tolerance test. Treatment with CVT-3619 for 2 wk resulted in significant lowering of FFA, TG, and insulin concentrations in rats on HF diet. To determine the effect of CVT-3619 on insulin sensitivity, hyperinsulinemic euglycemic clamp studies were performed in C57BL/J6 mice fed HF diet for 12 wk. Glucose infusion rate was decreased significantly in HF mice compared with chow-fed mice. CVT-3619 treatment 15 min prior to the clamp study significantly (P < 0.01) increased glucose infusion rate to values similar to that for chow-fed mice. In conclusion, CVT-3619 treatment lowers FFA and TG concentrations and improves insulin sensitivity in rodent models of insulin resistance.  相似文献   

18.
Defects in fat metabolism may contribute to the development of obesity, but what these defects are and where they occur in the feeding/fasting cycle are unknown. In the present study, basal fat metabolism was characterized using a high-fat diet (HFD)-induced model of obesity development. Male rats consumed a HFD (45% fat, 35% carbohydrate) ad libitum for either 1 or 5 wk (HFD1 or HFD5). After 1 wk on the HFD, rats were separated on the basis of body weight gain into obesity-prone (OP, > or =48 g) or obesity-resistant (OR, 相似文献   

19.
The effect of consuming meals of different macronutrient content on substrate oxidation following resistance exercise was examined in 9 resistance-trained men (26.2 +/- 2.4 years). Subjects completed 3 resistance exercise bouts of 8 exercises and 1 warm-up set (50% of 10 repetition maximum [RM]), which were followed by 3 sets of 10 repetitions (72.7 +/- 1.9% 10RM), with 60 seconds of rest between sets. Forty-five minutes after exercise, subjects consumed meals of high fat (HF, 37% carbohydrate, 18% protein, and 45% fat), high carbohydrate (HC, 79% carbohydrate, 20% protein, and 1% fat), or water (CON). Fat and carbohydrate oxidation were determined at 15-minute periods after meal consumption for 165 minutes. Blood was collected at preexercise (pre), premeal (0 minutes), and 15, 30, 45, 60, 90, 120, 150, and 180 minutes postmeal and was analyzed for insulin, glucose, triacylglycerols, and glycerol. There were no significant differences among the meal conditions for fat and carbohydrate oxidation. Insulin and glucose concentrations were significantly higher (p < 0.05) following HC at 15, 30, 45, 60, and 90 minutes compared to HF and CON. Triacylglycerol concentrations were significantly higher (p < 0.05) following HF at 90, 120, 150, and 180 minutes compared to HC and CON. Fat and carbohydrate oxidation were not affected by differences in macronutrient meal consumption after an acute bout of resistance training. Different macronutrient consumption does influence insulin, glucose, and triacylglycerol concentrations after resistance exercise.  相似文献   

20.
The insulin resistance syndrome X is related to excess intra-abdominal adipose tissue. With lipectomy of >50% of subcutaneous adipose tissue (SQAT) in nonhibernating, adult female Syrian hamsters on high-fat (HF; 50 calorie%) diet and measurements of oral glucose tolerance, oral [(14)C]oleic acid disposal, serum triglycerides, serum leptin, liver fat, perirenal (PR) adipose tissue cellularity, and body composition, we studied the role of SQAT. Sham-operated (S) animals on HF or low-fat (LF; 12.5 calorie%) diets served as controls. After 3 mo there was no visible regrowth of SQAT but HF diet led to similar levels of body weight and body fat in lipectomized and sham-operated animals. Lipectomized (L) animals had more intra-abdominal fat as a percentage of total body fat, higher insulinemic index, a strong trend toward increased liver fat content, and markedly elevated serum triglycerides compared with S-HF and S-LF. Liver and PR adipose tissue uptake of fatty acid were similar in L-HF and S-HF but reduced vs. S-LF, and were inversely correlated with liver fat content and insulin sums during the oral glucose tolerance test. In summary, lipectomy of SQAT led to compensatory fat accumulation implying regulation of total body fat mass. In conjunction with HF diet these lipectomized hamsters developed a metabolic syndrome with significant hypertriglyceridemia, relative increase in intra-abdominal fat, and insulin resistance. We propose that SQAT, via disposal and storage of excess ingested energy, acts as a metabolic sink and protects against the metabolic syndrome of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号