首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Surgical removal of body fat (lipectomy) triggers compensatory increases in nonexcised white adipose tissue (WAT), thus restoring adiposity levels in many species, including Siberian hamsters. In Siberian hamsters, when their lipectomized WAT is transplanted to another site (autologous grafts, no net change in body fat), healthy grafts result, but the lipectomy-induced compensatory increases in nonexcised WAT masses are exaggerated, an effect that apparently occurs only when the grafts contact intact WAT. When WAT is added to nonlipectomized hamsters to increase body fat, native WAT pads do not decrease. Thus WAT addition or removal-replacement does not induce compensatory WAT responses consistent with total body fat regulation as does WAT subtraction. Therefore, we tested whether the exaggerated response to lipectomy occurring with autologous WAT transplantation is dependent on graft site placement and whether the donor graft source [inguinal or epididymal WAT (IWAT, EWAT), sibling vs. nonsibling] affected body fat responses to WAT additions in nonlipectomized hamsters. Lipectomized hamsters received subcutaneous autologous EWAT grafts placed remotely from other WAT (ventrum) or in contact with intact WAT (dorsum), whereas intact hamsters received EWAT or IWAT grafts from sibling or nonsibling donors. The exaggerated response to lipectomy only occurred when grafts were in contact with intact WAT. EWAT, but not IWAT, additions to nonlipectomized siblings or nonsiblings increased native IWAT and retroperitoneal WAT mass but not EWAT mass compared with controls. Collectively, WAT transplantation to either lipectomized or nonlipectomized hamsters increased body fat contingent on graft contact with intact or native WAT.  相似文献   

2.
The distribution of fat in obese persons is related to the risk of developing various metabolic disorders, such as glucose intolerance, dyslipidemia and hypertension, and the combination of these conditions is known as the metabolic syndrome. The aim of this study was to investigate the role of subcutaneous fat in regulating insulin resistance and its influence on TNF-alpha expression in visceral fat, by using mice that were subjected to subcutaneous lipectomy with or without subsequent fat transplantation. After partial subcutaneous lipectomy, mice showed significantly greater accumulation of visceral fat compared with sham-operated control mice. Lipectomy led to higher plasma insulin and lower plasma glucose levels after loading with glucose and insulin, respectively, compared with the levels in control mice. Insulin-induced phosphorylation of IRS-1 was decreased in the skeletal muscles of lipectomized mice. Subcutaneous transplantation of fat pads into lipectomized mice reversed the above-mentioned changes indicating insulin resistance in these animals. The fat storage area of adipocytes and TNF- alpha expression by adipocytes in visceral fat were significantly higher in the lipectomized mice than in controls, while subcutaneous transplantation of fat reduced both the fat storage area and TNF-alpha expression. The insulin resistance of lipectomized mice was also ameliorated by systemic neutralization of TNF-alpha activity using a specific antibody. These findings obtained in mice subjected to subcutaneous lipectomy with/without subsequent fat transplantation indicate that subcutaneous fat regulates systemic insulin sensitivity, possibly through altering fat storage and the expression of TNF-alpha by adipocytes in visceral fat. The balance between accumulation of subcutaneous fat and visceral fat may be important with respect to the occurrence of systemic insulin resistance in the metabolic syndrome.  相似文献   

3.
The regulation of body weight/fat was studied by investigating mechanisms for compensatory adipose tissue growth after removal of bilateral epididymal fat pads from male adult Wistar rats. Food intake during the first 4 weeks and energy expenditure on Days 8-10 postsurgery were not different between lipectomized and sham operated rats. During Days 29-31 post surgery, a small (2.4%) but significant (P < 0.05) increase in heat production per metabolic body size was detected in lipectomized as compared with sham operated rats. The carcass composition of lipectomized and sham operated rats was not significantly different 16 weeks after surgery. The compensatory growth was fat pad-specific: mesenteric, retroperitoneal, and inguinal fat pads, but not perirenal fat pads, were heavier in lipectomized rats than in sham operated rats as early as 4 weeks postsurgery. Examination of fat cell size distribution in the compensating pads indicated a shift toward larger cells in retroperitoneal fat, but not in inguinal fat of lipectomized as compared with sham operated rats. Serum from lipectomized rats, but not media conditioned by exposure to retroperitoneal fat pads from lipectomized rats, stimulated proliferation of preadipocytes in vitro more than that from sham operated rats. Thus, compensatory adipose tissue growth after lipectomy may be mediated, in part, by blood-borne factors that are derived from tissues other than adipose tissue.  相似文献   

4.
The purpose of this study was to test whether serum testosterone (T) concentrations characteristic of reproductively active, long-day-housed Siberian hamsters are necessary for compensatory increases in nonexcised fat pads following removal of epididy-mal white adipose tissue (EWAT) and/or for the maintenance of seasonally appropriate body weights in these hamsters. Long-day-housed hamsters were castrated or left intact, sham or EWAT lipectomized, and given T or cholesterol (C) implants. All groups had ad libitum food access except for two castrated T-treated groups that were pair-fed to their C-treat-ed counterparts to control for effects of T on food intake. C-treated castrates had decreased body weights compared with all other groups, suggesting a role of T in the maintenance of seasonally appropriate body mass. Since the T-treated hamsters pair-fed to these T-deficient animals exhibited seasonally appropriate body weights and fat pad masses, T does not appear to affect these parameters through the modulation of food intake. All fat pads of C-treated animals were smaller than those of ad libitum- or pair-fed, T-treated castrates; however, EWAT was the only fat pad that was smaller in the C-treated sham-lipectomized group than in gonad-intact sham-lipectomized hamsters. This result may indicate an enhanced sensitivity of EWAT to T. The effects of T on fat pad mass were not associated with proportionate changes in lipoprotein lipase activity, suggesting that the major effect of T on fat accumulation occurs through other mechanisms in this species. C-treated lipectomized hamsters compensated for the body fat deficit 8 weeks after lipectomy via statistically nonsignificant increases in retroperitoneal and inguinal WAT mass. This finding suggests that, whereas T is necessary for maintenance of seasonally-appropriate body weight, it is not necessary for fat pad compensation after EWAT lipectomy.  相似文献   

5.
The effects of surgical ablation of adipose tissue were studied in male New Zealand rabbits. They were lipectomized or sham-operated either at 6 or 12 months, ages at which size and number of adipocytes are, respectively, stabilized in this species. The lipectomized animals were subjected to removal of about 80% of the perirenal and omental and to the totality of the dorsoscapular and inguinal fat tissues. Approximately 35 and 48% of the total body fat were, thus, surgically removed, respectively, in 6- and 12-month-old rabbits. All rabbits were killed 3 months after surgery and were carefully dissected. There was no significant difference in food consumption and body weight gain between lipectomized and sham-operated rabbits. Surgical removal of dorsoscapular, inguinal, and omental fat did not lead to regeneration whereas regeneration of the perirenal fat was substantial. At sacrifice the perirenal weight reached approximately 55% of the initial weight. Regeneration of perirenal adipose tissue in adults proceeded at roughly the same rate as after lipectomy in younger rabbits. These results suggest that adipose tissue regeneration in the rabbit is site dependent.  相似文献   

6.
7.
Objective: To test the hypothesis that adipose tissue could be one of the primary targets through which medium‐chain fatty acids (MCFAs) exert their metabolic influence. Research Methods and Procedures: Sprague‐Dawley rats were fed a control high‐fat diet compared with an isocaloric diet rich in medium‐chain triglycerides (MCTs). We determined the effects of MCTs on body fat mass, plasma leptin and lipid levels, acyl chain composition of adipose triglycerides and phospholipids, adipose tissue lipoprotein lipase activity, and the expression of key adipogenic genes. Tissue triglyceride content was measured in heart and gastrocnemius muscle, and whole body insulin sensitivity and glucose tolerance were also measured. The effects of MCFAs on lipoprotein lipase activity and adipogenic gene expression were also assessed in vitro using cultured adipose tissue explants or 3T3‐L1 adipocytes. Results: MCT‐fed animals had smaller fat pads, and they contained a considerable amount of MCFAs in both triglycerides and phospholipids. A number of key adipogenic genes were down‐regulated, including peroxisome proliferator activated receptor γ and CCAAT/enhancer binding protein α and their downstream metabolic target genes. We also found reduced adipose tissue lipoprotein lipase activity and improved insulin sensitivity and glucose tolerance in MCT‐fed animals. Analogous effects of MCFAs on adipogenic genes were found in cultured rat adipose tissue explants and 3T3‐L1 adipocytes. Discussion: These results suggest that direct inhibitory effects of MCFAs on adiposity may play an important role in the regulation of body fat development.  相似文献   

8.
9.
Inflammation is a major underlying cause for obesity-associated metabolic diseases. Hence, anti-inflammatory dietary components may improve obesity-related disorders. We hypothesized that delta-tocotrienol (δT3), a member of the vitamin E family, reduces adiposity, insulin resistance and hepatic triglycerides through its anti-inflammatory properties. To test this hypothesis, C57BL/6J male mice were fed a high-fat diet (HF) with or without supplementation of δT3 (HF+δT3) at 400 mg/kg and 1600 mg/kg for 14 weeks, and they were compared to mice fed a low-fat diet (LF) or HF supplemented with metformin as an antidiabetic control. Glucose tolerance tests were administered 2 weeks prior to the end of treatments. Histology, quantitative polymerase chain reaction and protein analyses were performed to assess inflammation and fatty acid metabolism in adipose and liver tissues. Significant improvements in glucose tolerance, and reduced hepatic steatosis and serum triglycerides were observed in δT3-supplemented groups compared to the HF group. Body and fat pad weights were not significantly reduced in HF+δT3 groups; however, we observed smaller fat cell size and reduced macrophage infiltration in their adipose tissues compared to other groups. These changes were at least in part mechanistically explained by a reduction of mRNA and protein expression of proinflammatory adipokines and increased expression of anti-inflammatory adipokines in HF+δT3 mice. Moreover, δT3 dose-dependently increased markers of fatty acid oxidation and reduced markers of fatty acid synthesis in adipose tissue and liver. In conclusion, our studies suggest that δT3 may promote metabolically healthy obesity by reducing fat cell hypertrophy and decreasing inflammation in both liver and adipose tissue.  相似文献   

10.
Objective: The aim of this work was to determine the sex‐associated differences in the expression of genes related to lipid metabolism and fuel partitioning in response to a high‐fat (HF) diet in rats, and whether this is linked to the higher tendency of males to suffer from metabolic disorders. Methods and Procedures: Male and female Wistar rats were fed for 6 months on a normal‐fat (NF) or an HF diet. Body weight, fat depot weight, lipid concentration in liver, blood metabolites, and the expression of genes involved in fuel metabolism and partitioning in the liver, white adipose tissue (WAT), and skeletal muscle were measured. Results: Female rats fed on an HF diet gained more weight and had a greater increase in the adiposity index than male rats, while the circulating insulin levels remained unaltered; these animals also showed an increased expression of genes related to the energy influx in WAT and with fat utilization in skeletal muscle. Male but not female rats showed increased hepatic peroxisome proliferator–activated receptor‐ α (PPAR‐ α ) and CPT1L mRNA expression, suggesting enhanced lipid handling and oxidation by this organ, and have a higher triacylglycerol content in liver. Male rats under the HF diet also displayed higher blood insulin levels. Discussion: These results show sex‐dependent differences in lipid handling and partitioning between tissues in response to an HF diet, with females showing a higher capacity for storing fat in adipose tissue and for oxidizing fatty acids in muscle. These adaptations can help to explain the lower tendency of females to suffer from obesity‐linked disorders under the conditions of an HF diet.  相似文献   

11.
Ossabaw swine have a 'thrifty genotype' (propensity to obesity) that enables them to survive seasonal food shortages in their native environment. Consumption of excess kcal causes animals of the thrifty genotype to manifest components of the metabolic syndrome, including central (intra-abdominal) obesity, insulin resistance, impaired glucose tolerance, dyslipidemia, and hypertension. We determined whether female Ossabaw swine manifest multiple components of the metabolic syndrome by comparing lean pigs fed a normal maintenance diet (7% kcal from fat; lean, n = 9) or excess chow with 45% kcal from fat and 2% cholesterol (obese, n = 8). After 9 wk, body composition, glucose tolerance, plasma lipids, and intravascular ultrasonography and histopathology of coronary arteries were assessed. Computed tomography (CT) assessed subcutaneous and intra-abdominal fat deposition and was compared with traditional methods, including anatomical measurements, backfat ultrasonography, and proximate chemical composition analysis. Compared with lean animals, obese swine showed 2-fold greater product of the plasma insulin x glucose concentrations, 4.1-fold greater total cholesterol, 1.6-fold greater postprandial triglycerides, 4.6-fold greater low- to high-density lipoprotein cholesterol ratio, hypertension, and neointimal hyperplasia of coronary arteries. The 1.5-fold greater body weight in obese swine was largely accounted for by the 3-fold greater carcass fat mass. High correlation (0.79 to 0.95) of CT, anatomical measurements, and ultrasonography with direct chemical measures of subcutaneous, retroperitoneal, and visceral fat indicates high validity of all indirect methods. We conclude that relatively brief feeding of excess atherogenic diet produces striking features of metabolic syndrome and coronary artery disease in female Ossabaw swine.  相似文献   

12.
LU, HUIQING, ANNE BUISON, VIRGINIA UHLEY AND K-L CATHERINE JEN. Long-term weight cycling in female Wistar rats: effects on metabolism. Obes Res. Weight cycling (WC) induced by ad-lib and restricted high fat (HF) feeding has been shown to reduce final body weight but not body fat percent in female Wistar rats. We examined the metabolic consequences of this type of WC. Five groups of female Wistar rats were fed a HF diet and the sixth group was fed a low fat diet to serve as a control group. Of the five HF groups, four groups were weight cycled by ad-lib and restricted feeding of the HF diet One of these groups weight cycled three times (HFCYC group) while the remaining three groups weight cycled once only, corresponding to the first, second and the third cycle of the HFCYC group. HF feeding induced hyperinsulinemia, hypertriglyceridemia, insulin resistance and elevated adipose tissue lipoprotein lipase (AT-LPL) activity levels as compared to rats fed the low fat (LF) control diet. WC further increased blood insulin concentrations and insulin resistance in rats with three cycles of WC. However, blood pressure was not affected by HF feeding or WC. The magnitude of increase of AT-LPL was reduced in weight cycled, HF fed obese rats after 15 weeks refeeding. We concluded that even though WC did not enhance weight gain nor impair weight loss, it did facilitate the development of insulin resistance and may predispose animals to diabetes.  相似文献   

13.
Behavioral therapies aimed at reducing excess body fat result in limited fat loss after dieting. To understand the causes for maintenance of adiposity, high‐fat (HF) diet–induced obese (DIO) mice were switched to a low‐fat chow diet, and the effects of chow on histological and molecular alterations of adipose tissue and metabolic parameters were examined. DIO mice reduced and stabilized their body weights after being switched to chow (HF‐chow), but retained a greater amount of adiposity than chow‐fed mice. Reduction in adipocyte volume, not number, caused a decrease in fat mass. HF‐chow mice showed normalized circulating insulin and leptin levels, improved glucose tolerance, and reduced inflammatory status in white adipose tissue (WAT). Circulating leptin levels corrected for fat mass were lower in HF‐chow mice. Leptin administration was used to test whether reduced leptin level of HF‐chow mice inhibited further fat loss. Leptin treatment led to an additional reduction in adiposity. Finally, HF‐HF mice had lower mRNA levels of β3 adrenergic receptor (β3‐AR) in epididymal WAT (EWAT) compared to chow‐fed mice, and diet change led to an increase in the WAT β3‐AR mRNA levels that were similar to the levels of chow‐fed mice, suggesting an elevation in sympathetic activation of WAT during diet switch relative to HF‐HF mice leading to the reduced leptin level and proinflammatory cytokine content. In summary, HF‐chow mice were resistant to further fat loss due to leptin insufficiency. Diet alteration from HF to low fat improved metabolic state of DIO mice, although their adiposity was defended at a higher level.  相似文献   

14.
We evaluated the metabolic impact of farnesoid X receptor (FXR) activation by administering a synthetic FXR agonist (GW4064) to mice in which obesity was induced by a high fat diet. Administration of GW4064 accentuated body weight gain and glucose intolerance induced by the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue. Mechanistically, treatment with GW4064 decreased bile acid (BA) biosynthesis, BA pool size, and energy expenditure, whereas reconstitution of the BA pool in these GW4064-treated animals by BA administration dose-dependently reverted the metabolic abnormalities. Our data therefore suggest that activation of FXR with synthetic agonists is not useful for long term management of the metabolic syndrome, as it reduces the BA pool size and subsequently decreases energy expenditure, translating as weight gain and insulin resistance. In contrast, expansion of the BA pool size, which can be achieved by BA administration, could be an interesting strategy to manage the metabolic syndrome.  相似文献   

15.
Zinc (Zn) has been implicated in altered adipose metabolism, insulin resistance and obesity. The objective of this study was to investigate the effects dietary Zn deficiency and supplementation on adiposity, serum leptin and fatty acid composition of adipose triglycerides and phospholipid in C57BL/6J mice fed low-fat (LF) or high-fat (HF) diets for a 16 week period. Weanling C57BL/6J mice were fed LF (16% kcal from soybean oil) or HF (39% kcal from lard and 16% kcal from soybean oil) diets containing 3, 30 or 150 mg Zn/kg diet (ZD = Zn-deficient, ZC = Zn control and ZS = Zn-supplemented, respectively). HF-fed mice had higher fat pad weights and lower adipose Zn concentrations than the LF-fed mice. The ZD and ZS groups had a reduced content of fatty acids in adipose triglycerides compared to the ZC group, suggesting that zinc status may influence fatty acid accumulation in adipose tissue. Serum leptin concentration was positively correlated with body weight and body fat, and negatively correlated with adipose Zn concentration. Dietary fat, but not dietary Zn, altered the fatty acid composition of adipose tissue phospholipid and triglyceride despite differences in Zn status assessed by femur Zn concentrations. The fatty acid profile of adipose triglycerides generally reflected the diets. HF-fed mice had a higher percentage of C20:4 n-6, elevated ratio of n-6/n-3, lower ratio of PUFA/SAT and reduced percentage of total n-3 fatty acids in adipose phospholipid, a fatty acid profile associated with obesity-induced risks for insulin resistance and impaired glucose transport. In summary, the reduced adipose Zn concentrations in HF-fed mice and the negative correlation between serum leptin and adipose Zn concentrations support an interrelationship among obesity, leptin and Zn metabolism.  相似文献   

16.
Objective: This study was designed to test whether adiponectin plays a role in diet‐induced obesity and insulin resistance and acts as a mediator to induce or inhibit specific metabolic pathways involved in lipid metabolism Research Methods and Procedures: Forty C57BL/6J male mice were fed either a high‐fat (HF) or control diet for 4 months, and adiponectin, its receptors, and enzyme expression in liver and muscle tissue were measured. Results: Mice fed the HF diet exhibited significantly greater weight gain, abnormal oral glucose tolerance test curves, and elevated homeostasis model assessment of insulin resistance (5.3 ± 0.89 vs. 2.8 ± 0.39). A significant reduction of adiponectin RNA expression (51%) and protein levels (15%) was observed in the adipose tissue of HF animals; however, serum adiponectin levels did not differ between groups (7.12 ± 0.34 μg/mL vs. 6.44 ± 0.38 μg/mL). Expression of hepatic mRNA of AdipoR1 and AdipoR2 was reduced by 15% and 25%, respectively, in animals fed the HF diet. In contrast, receptor mRNA expression of AdipoR1 and AdipoR2 increased by 25% and 30%, respectively, in muscle tissue. No effect was found on hepatic adenosine monophosphate‐activated protein kinase expression; however, a significant reduction of phosphoadenosine monophosphate kinase levels in muscles was observed. Hepatic acetyl‐coenzyme A carboxylase was similar between groups, but in muscles, the inactive form phosphoacetyl‐coenzyme A carboxylase was significantly reduced (p < 0.05). Discussion: The HF diet led to decreased insulin sensitivity accompanied by impaired activity of adiponectin‐related enzymes in skeletal muscles but not in the liver. These results suggest that the HF diet has a tissue‐specific effect on adiponectin and associated enzyme expression.  相似文献   

17.
能量代谢的适应性调节是小型哺乳动物应对环境季节性变化的主要策略之一。为探讨不同温度下动物在代谢产热能量支出与脂肪累积之间的权衡策略,以成年雄性黑线仓鼠为研究对象开展了3 个实验:实验1 将动物驯化于高脂和低脂食物;实验2 将动物暴露于低温(5℃)和暖温(30℃);实验3 将饲喂高脂食物的动物暴露于低温。以食物平衡法测定摄食量、摄入能和消化率,以开放式氧气分析仪测定代谢产热,以索氏抽提法测定脂肪含量。结果发现,取食高脂食物的黑线仓鼠摄食量显著减少,但脂肪累积显著增加;暖温下摄食量显著减少,但体脂含量显著增加,低温下摄食量显著升高,但体脂含量显著减少;饲喂高脂食物的黑线仓鼠在低温下摄入能显著增加,非颤抖性产热增强,但体脂含量显著降低。结果表明高脂食物对黑线仓鼠体脂累积的影响与环境温度有关,低温诱导脂肪动员,暖温促进脂肪贮存;低温下黑线仓鼠增加能量摄入不能完全补偿用于产热的能量支出,导致脂肪动员增加;暖温下代谢产热降低是脂肪累积的主要因素;与能量摄入相比代谢产热的能量支出在体脂累积的适应性变化中发挥更重要的作用。  相似文献   

18.
The sensory innervation of white adipose tissue (WAT) is indicated by the labeling of sensory bipolar neurons in the dorsal root ganglion after retrograde dye placement into WAT. In addition, immunoreactivity (ir) for sensory-associated neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P in WAT pads also supports the notion of WAT sensory innervation. The function of this sensory innervation is unknown but could involve conveying the degree of adiposity to the brain. In tests of total body fat regulation, partial surgical lipectomy triggers compensatory increases in the mass of nonexcised WAT, ultimately resulting in restoration of total body fat levels in Siberian hamsters and other animals. The signal that triggers this compensation is unknown but could involve disruption of WAT sensory innervation that accompanies lipectomy. Therefore, a local and selective sensory denervation was accomplished by microinjecting the sensory nerve neurotoxin capsaicin bilaterally into epididymal WAT (EWAT) of Siberian hamsters, whereas controls received vehicle injections. Additional hamsters had bilateral EWAT lipectomy (EWATx) or sham lipectomy. As seen previously, EWATx resulted in significantly increased retroperitoneal WAT (RWAT) and inguinal WAT (IWAT) masses. Capsaicin treatment significantly decreased CGRP- but not tyrosine hydroxylase-ir, attesting to the diminished and selective sensory innervation. Capsaicin-treated hamsters also had increased RWAT and, to a lesser degree, IWAT mass largely mimicking the WAT mass increases seen after lipectomy. Collectively, these data suggest the possibility that information related to peripheral lipid stores may be conveyed to the brain via the sensory innervation of WAT.  相似文献   

19.
Direct tests of the hypothesized total body fat regulatory system have been accomplished by partial surgical lipectomy. This usually results in the restoration of the lipid deficit through compensatory increases in nonexcised white adipose tissue (WAT) masses of ground squirrels, laboratory rats, and mice, as well as Siberian and Syrian hamsters. We challenged this hypothesized total body fat regulatory system by testing the response of Siberian hamsters to 1) lipid deficits [lipectomy; primarily bilateral epididymal WAT (EWAT) removal], 2) lipid surfeits (addition of donor EWAT with no lipectomy), 3) no net change in lipid [EWAT or inguinal WAT (IWAT) lipectomy with the excised fat replaced to a new location (autologous)], 4) lipectomy with the same pad (EWAT lipectomy only) added from a sibling (nonautologous), and 5) sham surgeries for each treatment. Food intake generally was not affected. Body mass was not affected across all treatments. Grafts approximately 3 mo later had normal appearance both macro- and microscopically and were revascularized. The normal lipectomy-induced compensatory increases in nonexcised WAT masses surprisingly were exaggerated with autologous EWAT transplants, but not for autologous IWAT or nonautologous EWAT transplants. There was no compensatory decrease in native WAT masses with nonautologous EWAT additions. Collectively, only lipectomy triggered reparation of the lipid deficit, but the other manipulations did not, suggesting a system biased toward rectifying decreases in lipid or an inability of the hypothesized total body fat regulatory system to recognize WAT transplants.  相似文献   

20.
Time-restricted feeding (TRF) can reduce adiposity and lessen the co-morbidities of obesity. Mice consuming obesogenic high-fat (HF) diets develop insulin resistance and hepatic steatosis, but have elevated indices of long-chain polyunsaturated fatty acids (LCPUFA) that may be beneficial. While TRF impacts lipid metabolism, scant data exist regarding the impact of TRF upon lipidomic composition of tissues. We (1) tested the hypothesis that TRF of a HF diet elevates LCPUFA indices while preventing insulin resistance and hepatic steatosis and (2) determined the impact of TRF upon the lipidome in plasma, liver, and adipose tissue. For 12 weeks, male, adult mice were fed a control diet ad libitum, a HF diet ad libitum (HF-AL), or a HF diet with TRF, 12 hours during the dark phase (HF-TRF). HF-TRF prevented insulin resistance and hepatic steatosis resulting from by HF-AL treatment. TRF-blocked plasma increases in LCPUFA induced by HF-AL treatment but elevated concentrations of triacylglycerols and non-esterified saturated fatty acids. Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号