首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oil camellia trees are important woody plants for the production of high-quality cooking oil. On the contrary to their economic importance, their genetic and genomic resources are very limited, which greatly hamper the genetic studies on oil camellia trees. Microsatellites or simple sequence repeats (SSRs) have great value in many aspects of genetic analyses due to their high polymorphism and codominant inheritance. In this study, we report the large-scale development and characterization of SSR markers derived from genomic sequences of Camellia chekiangoleosa by high-throughput pyrosequencing technology. A total of 1,091,393 genomic shotgun reads were generated using Roche 454 FLX sequencer, the average read length was 319 bp, and the total sequence throughput was 347.9 Mb. These sequences were assembled into 35,315 contigs with total length of 14.8 Mb and the N50 contig size of 770 bp. By analyzing with microsatellite (MISA), a total of 5,844 perfect microsatellites were detected from the assembled sequences. Among them, tetranucleotide repeats were found to be the most frequent microsatellites in the genome of C. chekiangoleosa, and all the dominant repeat motifs for different types of SSRs were detected to be rich in A/T. Experimental analysis with 900 SSR primer pairs revealed that 66 % of them succeeded in PCR amplification. Further investigation with 345 SSR primer pairs showed that a relatively high percentage of primers amplified polymorphic loci (31.9 %). Experimental data also revealed that, overall, long microsatellite repeats (>20 bp) were more variable than the short ones (<20 bp) in the genome of oil camellia tree.  相似文献   

2.
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different- colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were sampled. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating independently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once. Received: 3 October 2000 / Accepted: 19 February 2001  相似文献   

3.
Yu H  Li Q 《The Journal of heredity》2008,99(2):208-214
A total of 147 microsatellite-containing expressed sequence tags (ESTs) (3.63%) were detected from 4053 ESTs of the Pacific oyster (Crassostrea gigas) in GenBank. The average density of simple sequence repeats (SSRs) was 1 per 8.25 kb of EST after redundancy elimination. Dinucleotide repeat motifs appeared to be the most abundant type. Sixteen new polymorphic EST-SSRs were developed. The number of alleles per locus varied from 3 to 12, with an average of 5.9 alleles per locus. Marker transferability was tested on 2 other Crassostrea species, and 14 loci gave successful amplifications in both species. Twenty EST-SSRs were tested on 3 families of C. gigas for examination of inheritance mode of EST-SSRs. Thirty-five tests of segregation ratios revealed 5 significant departures from expected Mendelian ratios, 4 of which confirmed Mendelian expectations when accounting for the presence of null alleles. Null alleles were detected at 3 loci (15.0%) of the 20 loci, and the frequency of null alleles at EST-SSRs was lower than that in genomic SSRs in C. gigas. The results obtained in this study suggest that C. gigas EST-SSRs will complement the currently available genomic SSR markers and may be useful for comparative mapping, marker-assisted selection, and evolutionary studies.  相似文献   

4.
Jun TH  Michel AP  Mian MA 《Génome》2011,54(5):360-367
Simple sequence repeats (SSRs) or microsatellites are very useful molecular markers, owing to their locus-specific codominant and multiallelic nature, high abundance in the genome, and high rates of transferability across species. The soybean aphid (Aphis glycines Matsumura) has become the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America, since it was first found in the Midwest of the United States in 2000. Biotypes of the soybean aphid capable of colonizing newly developed aphid-resistant soybean cultivars have been recently discovered. Genetic resources, including molecular markers, to study soybean aphids are severely lacking. Recently developed next generation sequencing platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The objectives of this study were (i) to develop and characterize genomic SSR markers from soybean aphid genomic sequences generated by next generation sequencing technology and (ii) to evaluate the utility of the SSRs for genetic diversity or relationship analyses. In total 128 SSR primer pairs were designed from sequences generated by Illumina GAII from a reduced representation library of A. glycines. Nearly 94% (120) of the primer pairs amplified SSR alleles of expected size and 24 SSR loci were polymorphic among three aphid samples from three populations. The polymorphic SSRs were successfully used to differentiate among 24 soybean aphids from Ohio and South Dakota. Sequencing of PCR products of two SSR markers from four aphid samples revealed that the allelic polymorphism was due to variation in the SSR repeats among the aphids. These markers should be particularly useful for genetic differentiation among aphids collected from soybean fields at different localities and regions. These SSR markers provide the soybean aphid research community with the first set of PCR-based codominant markers developed from the genomic sequences of A. glycines.  相似文献   

5.
The abundance and inherent potential for variations in simple sequence repeats (SSRs) or microsatellites resulted in valuable source for genetic markers in eukaryotes. We describe the organization and abundance of SSRs in fungus Fusarium graminearum (causative agent for Fusarium head blight or head scab of wheat). We identified 1705 SSRs of various nucleotide repeat motifs in the sequence database of F. graminearum. It is observed that mononucleotide repeats (62%) were most abundant followed by di- (20%) and trinucleotide repeats (14%). It is noted that tetra-, penta- and hexanucleotide repeats accounted for only 4% of SSRs. The estimated frequency of Class I SSRs (perfect repeats ≥20 nucleotides) was one SSR per 124.5 kb, whereas the frequency of Class II (perfect repeats >10 nucleotides and ≫20 nucleotides) was one SSR per 25.6 kb. The dynamics of SSRs will be a powerful tool for taxonomic, phylogenetic, genome mapping and population genetic studies as SSR based markers show high levels of allelic variation, codominant inheritance and ease of analysis.  相似文献   

6.
Twenty-two highly variable SSR markers were developed in Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] from five SSR-enriched genomic libraries. Fifteen PCR primer pairs amplified a single codominant locus, while seven primer pairs occasionally amplified two loci. The Mendelian inheritance of all 22 SSRs was confirmed via segregation analyses in several Douglas-fir families. The mean observed heterozygosity and the mean number of alleles per locus were 0.855 (SE=0.020) and 23 (SE=1.6), respectively. Twenty markers were used in genetic linkage analysis and mapped to ten known linkage groups. Because of their high polymorphism and unambiguous phenotypes, 15 single-locus markers were selected as the most suitable for DNA fingerprinting and parentage analysis. Only three SSRs were sufficient to achieve an average probability of exclusion from paternity of 0.998 in a Douglas-fir seed orchard block consisting of 59 parents.Communicated by O. Savolainen  相似文献   

7.
Among commonly applied molecular markers, simple sequence repeats (SSRs, or microsatellites) possess advantages such as a high level of polymorphism and codominant pattern of inheritance at individual loci. To facilitate systematic and rapid genetic mapping in soybean, we designed a genotyping panel comprised 304 SSR markers selected for allelic diversity and chromosomal location so as to provide wide coverage. Most primer pairs for the markers in the panel were redesigned to yield amplicons of 80–600 bp in multiplex polymerase chain reaction (PCR) and fluorescence-based sequencer analysis, and they were labelled with one of four different fluorescent dyes. Multiplex PCR with sets of six to eight primer pairs per reaction generated allelic data for 283 of the 304 SSR loci in three different mapping populations, with the loci mapping to the same positions as previously determined. Four SSRs on each chromosome were analysed for allelic diversity in 87 diverse soybean germplasms with four-plex PCR. These 80 loci showed an average allele number and polymorphic information content value of 14.8 and 0.78, respectively. The high level of polymorphism, ease of analysis, and high accuracy of the SSR genotyping panel should render it widely applicable to soybean genetics and breeding.  相似文献   

8.
New microsatellite loci for pomegranate, Punica granatum (Lythraceae)   总被引:1,自引:0,他引:1  
? Premise of the study: A new set of pomegranate microsatellites was selected and characterized to assess the level of genetic diversity among cultivars and wild genotypes. ? Methods and Results: Nine Simple Sequence Repeat (SSR) markers were obtained using the Microsatellite-AFLP technique and were successfully amplified in 34 genotypes belonging to Italian, Spanish, and Turkish germplasm collections. The number of alleles per locus ranged from 1 to 5, and the total number of alleles was 22. ? Conclusions: Because only a few codominant markers are available for this species, the newly identified SSRs will facilitate genetic diversity studies, fingerprinting, and mapping. In addition, the 9 loci successfully amplified in P. granatum var. nana. No cross transferability was observed for Cuphea micropetala and Lagerstroemia indica (Lythraceae).  相似文献   

9.
Short-tandem-repeat (SSR) or microsatellite polymorphisms are some of the most extensively employed genetic markers in contemporary linkage mapping studies. To date, only a limited number of microsatellites have been isolated in the gray, short-tailed opossum Monodelphis domestica, a South American marsupial widely used for comparative biological and biomedical research. To increase the number of potentially useful mapping markers, we screened 2 microsatellite-enriched genomic libraries containing alternatively (CA)n or (GA)n repeats. A total of 184 clones were sequenced, from which 60 polymorphic microsatellite markers were successfully optimized. The efficiency of this enrichment protocol for M. domestica microsatellite isolation is discussed, and suggestions to improve the outcome are made. All 60 loci showed high allelic diversity, with allele numbers ranging from 2 to 10 in a subset of 33 unrelated animals. Normal Mendelian inheritance was confirmed for all loci by analyzing allelic segregation in 5 two-generation families. One microsatellite appeared to be X linked, and null alleles were found in 5 others. Two-point linkage analyses were implemented using the data on the 5 families, leading to the assignment of 59 of these loci to the existing linkage groups. The 60 novel microsatellites developed in this study will contribute significantly to the M. domestica linkage map, and further QTL mapping studies.  相似文献   

10.
Microsatellite DNA/simple-sequence-repeat (SSR) loci were identified, isolated and characterized in white spruce (Picea glauca) by screening both a non-enriched partial genomic library and a partial genomic library enriched for (AG/TC)n-containing clones. Inheritance and linkage of polymorphic SSR loci were determined in F1 progeny of four controlled crosses. We also assessed the compatibility and usefulness of the P. glauca microsatellite DNA markers in five other Picea species. Twenty-four microsatellites were identified by sequencing 32 clones selected from screens of 5,400 clones from the two libraries. The (AG/TC)n microsatellites were the most abundant in the non-enriched library. Eight microsatellite DNA loci were of the single-copy type, and six of these were polymorphic. A total of 87 alleles were detected at the six polymorphic SSR loci in 32 P. glauca individuals drawn from several populations. The number of alleles found at these six SSR loci ranged from 2 to 22, with an average of 14.5 alleles per locus, and the observed heterozygosity ranged from 0.48 to 0.91, with a mean of 0.66 per locus. Parents of the controlled crosses were polymorphic for five of the six polymorphic SSR loci. Microsatellite DNA variants at each of these five SSR loci followed a single-locus, codominant, Mendelian inheritance pattern. Joint two-locus segregation tests indicated complete linkage between PGL13 and PGL14, and no linkage between any of the remaining SSR loci. Each of the 32 P. glauca individuals examined had unique single or two-locus genotypes. With the exception of non-amplification of PGL12 in P. sitchensis, P. mariana, and P. abies and the monomorphic nature of PGL7 in P. mariana, primer pairs for all six polymorphic SSR loci successfully amplified specific fragments from genomic DNA and resolved polymorphic microsatellites of comparable sizes in P. engelmanni, P. sitchensis, P. mariana, P. rubens, and P. abies. The closely related species P. mariana and P. rubens, and P. glauca and P. sitchensiss could be distinguished by the PGL12 SSR marker. The microsatellite DNA markers developed and reported here could be used for assisting various genetics, breeding, biotechnology, tree forensics, genome mapping, conservation, restoration, and sustainable forest management programs in spruce species.  相似文献   

11.
Three kinds of genetic markers including simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs) and sequence characterized amplified regions (SCARs) were developed from Aphanomyces euteiches. Of 69 loci tested, seven SSR, two SNP and two SCAR markers were codominantly polymorphic. These codominant markers and dominant markers described herein will facilitate population genetic and evolutionary studies of this important plant pathogen.  相似文献   

12.
Tomato and potato expressed sequence tag (EST) sequences contained in the solanaceae genomics network (SGN) database were screened for simple sequence repeat (SSR) motifs. A total of 609 SSRs were identified and assayed on Solanum lycopersicum LA925 (formerly Lycopersicon esculentum) and S. pennellii LA716 (formerly L. pennellii). The SSRs that did not amplify, gave multiple band products, or did not exhibit a polymorphism that could be readily detected on standard agarose gels in either of these species were eliminated. A set of 76 SSRs meeting these criteria was then placed on the S. lycopersicum (LA925) x S. pennellii (LA716) high-density map. A set of 76 selected cleaved amplified polymorphism (CAP) markers was also developed and mapped onto the same population. These 152 PCR-based anchor markers are uniformly distributed and encompass 95% of the genome with an average spacing of 10.0 cM. These PCR-based markers were further used to characterize S. pennellii introgression lines (Eshed and Zamir, Genetics 141:1147-1162, 1995) and should prove helpful in utilizing these stocks for high-resolution mapping experiments. The majority of these anchor markers also exhibit polymorphism between S. lycopersicum and two wild species commonly used as parents for mapping experiments, S. pimpinellifolium (formerly L. pimpinellifolium) and S. habrochaites (formerly L. hirsutum), indicating that they will be useful for mapping in other interspecific populations. Sixty of the mapped SSRs plus another 49 microsatellites were tested for polymorphism in seven tomato cultivars, four S. lycopersicum var. cerasiforme accessions and eight accessions of five different wild tomato species. Polymorphism information content values were highest among the wild accessions, with as many as 13 alleles detected per locus over all accessions. Most of the SSRs (90%) had accession-specific alleles, with the most unique alleles and heterozygotes usually found in accessions of self-incompatible species. The markers should be a useful resource for qualitative and quantitative trait mapping, marker-assisted selection, germplasm identification, and genetic diversity studies in tomato. The genetic map and marker information can be found on SGN (http://www.sgn.cornell.edu).  相似文献   

13.
Polyacrylamide gel electrophoresis was used to examine the variability and inheritance of esterases in five strains of the house fly, Musca domestica L. Individual zymograms exhibited 8 to 15 bands that could be assigned to one of five zones designated as A through E from anode to cathode. Correlations of P1-F1 banding patterns indicated the existence of at least 3 different loci in zone A. 2 each in zones B and C, and 4 in zone D; no clear inheritance patterns were discernable for the bands of zone E. Only the Es-5 locus of zone C was monomorphic in all of the strains studied. Eight loci possessed null alleles and codominant alleles were detected at six loci. The results suggest that esterases should prove useful for measuring relationships among fly populations or for various studies of population dynamics.  相似文献   

14.
Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice) and dicots (Arabidopsis, Medicago and Populus) was performed. A total of 797,863 simple sequence repeats (SSRs) were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers) of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium and related grass species, especially for the map based cloning of the candidate gene(s).  相似文献   

15.
16.
Coffee is an important beverage crop in the world and has a significant contribution to Kenya’s economy. Here, we analyzed the genome-wide distribution of microsatellites in the Coffea canephora genome. A total of 159,041 SSRs were identified, with an overall density of 308 SSRs per Mb. Tetra-nucleotide repeats are the most abundant, accounting for 32 % of the total SSRs. AT-rich motifs are dominant across all SSR repeat units, while GC-rich motifs were generally rare. A set of 100 SSRs was selected to amplify 96 coffee accessions, including 10 wild accessions collected from Mt. Marsabit (Kenya). Of these SSRs, 33 % generated clear polymorphic bands among all tested accessions, with an average of 3.9 alleles per SSR locus. Wild coffee species from Mt. Marsabit showed a close genetic similarity with cultivated accessions in Kenya, suggesting that the wild species in Mt. Marsabit played an important role in the domestication of cultivated coffee in Kenya. Significantly low pairwise genetic divergence was observed between cultivated and wild accessions in Kenya, suggesting a relatively narrow level of genetic basis among coffee germplasm in Kenya. In addition, cultivated and wild coffee accessions in Kenya show a great divergence from those in other countries. Our results not only provide molecular tools for genetic studies in coffee but are also helpful for conservation and coffee breeding programs in Kenya.  相似文献   

17.
为了开发东非半边莲属特有植物的微卫星分子标记(SSR),本研究基于Illumina-HiSeq 2000测序平台对巨人半边莲Lobelia deckenii的基因组进行高通量测序。利用MISA软件对获得的基因组数据库进行搜索与分析,共鉴别出58 966个SSR位点,并利用Primer软件成功设计出3558对特异性的SSR引物。利用L.deckenii 3个居群的6个样品对随机挑选的40对SSR引物进行扩增效率检验,发现有32对重复性好且可扩增出清晰条带。利用筛选出的32对SSR引物对来自肯尼亚山居群的24株个体进行PCR扩增并采用荧光分型技术检测多态性,结果显示有14对可扩增出稳定的多态性条带,共有86个等位基因,各SSR位点的等位基因数(NA)为4~9个,观测杂合度(Ho)和期望杂合度(He)分别为0.000~1.000和0.625~0.854。本研究结果表明,通过高通量测序技术开发东非特有植物巨人半边莲的SSR标记是一种简单而高效的途径,这些新的SSR分子标记为巨人半边莲的居群遗传多样性、遗传结构以及对其开展保护生物学研究提供了工具。  相似文献   

18.
Six SSR loci, previously developed for grapevine, were analyzed to evaluate the genetic variability and cultivar relatedness in a collection of 25 autochthonous Vitis vinifera varieties from Perú and Argentina.

The number of alleles per locus ranged from 6 to 13, while the number of microsatellites genotypes varied between 9 and 16. The expected heterozygosity varied between 0.71 and 0.89 and the polymorphism information content ranged from 0.70 to 0.88 indicating that the SSRs were highly informative. It was possible to identify 76 different genotypes, with all accessions showing-at least one-specific combination of alleles. Triallelic loci were observed with some SSR. Sequence analysis revealed that variation in the number of repeats and insertion/deletions (InDels) accounted for the polymorphisms observed. Clustering analysis resulted in four separate groups of varieties sharing at least 75% of the markers. A few cases of synonymies were found within the Peruvian accessions. Varieties were clustered following a general pattern of shared morphological and enological traits, rather than geographical origin.  相似文献   


19.
The development of organized, informative, robust, user-friendly, and freely accessible molecular markers is imperative to the Musa marker assisted breeding program. Although several hundred SSR markers have already been developed, the number of informative, robust, and freely accessible Musa markers remains inadequate for some breeding applications. In view of this issue, we surveyed SSRs in four different data sets, developed large-scale non-redundant highly informative therapeutic SSR markers, and classified them according to their attributes, as well as analyzed their cross-taxon transferability and utility for the genetic study of Musa and its relatives. A high SSR frequency (177 per Mbp) was found in the Musa genome. AT-rich dinucleotide repeats are predominant, and trinucleotide repeats are the most abundant in transcribed regions. A significant number of Musa SSRs are associated with pre-miRNAs, and 83% of these SSRs are promising candidates for the development of therapeutic SSR markers. Overall, 74% of the SSR markers were polymorphic, and 94% were transferable to at least one Musa spp. Two hundred forty-three markers generated a total of 1047 alleles, with 2-8 alleles each and an average of 4.38 alleles per locus. The PIC values ranged from 0.31 to 0.89 and averaged 0.71. We report the largest set of non-redundant, polymorphic, new SSR markers to be developed in Musa. These additional markers could be a valuable resource for marker-assisted breeding, genetic diversity and genomic studies of Musa and related species.  相似文献   

20.
Microsatellites or simple sequence repeats (SSRs) are among the genetic markers most widely utilized in research. This includes applications in numerous fields such as genetic conservation, paternity testing, and molecular breeding. Though ordered draft genome assemblies of camels have been announced, including for the Arabian camel, systemic analysis of camel SSRs is still limited. The identification and development of informative and robust molecular SSR markers are essential for marker assisted breeding programs and paternity testing. Here we searched and compared perfect SSRs with 1–6 bp nucleotide motifs to characterize microsatellites for draft genome sequences of the Camelidae. We analyzed and compared the occurrence, relative abundance, relative density, and guanine-cytosine (GC) content in four taxonomically different camelid species: Camelus dromedarius, C. bactrianus, C. ferus, and Vicugna pacos. A total of 546762, 544494, 547974, and 437815 SSRs were mined, respectively. Mononucleotide SSRs were the most frequent in the four genomes, followed in descending order by di-, tetra-, tri-, penta-, and hexanucleotide SSRs. GC content was highest in dinucleotide SSRs and lowest in mononucleotide SSRs. Our results provide further evidence that SSRs are more abundant in noncoding regions than in coding regions. Similar distributions of microsatellites were found in all four species, which indicates that the pattern of microsatellites is conserved in family Camelidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号