首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims: While invasive species may escape from natural enemies in thenew range, the establishment of novel biotic interactions withspecies native to the invaded range can determine their success.Biological control of plant populations can be achieved by manipulationof a species' enemies in the invaded range. Interactions weretherefore investigated between a native parasitic plant andan invasive legume in Mediterranean-type woodlands of SouthAustralia. Methods: The effects of the native stem parasite, Cassytha pubescens,on the introduced host, Cytisus scoparius, and a co-occurringnative host, Leptospermum myrsinoides, were compared. The hypothesisthat the parasitic plant would have a greater impact on theintroduced host than the native host was tested. In a fieldstudy, photosynthesis, growth and survival of hosts and parasitewere examined. Key Results: As predicted, Cassytha had greater impacts on the introducedhost than the native host. Dead Cytisus were associated withdense Cassytha infections but mortality of Leptospermum wasnot correlated with parasite infection. Cassytha infection reducedthe photosynthetic rates of both hosts. Infected Cytisus showedslower recovery of photosystem II efficiency, lower transpirationrates and reduced photosynthetic biomass in comparison withuninfected plants. Parasite photosynthetic rates and growthrates were higher when growing on the introduced host Cytisus,than on Leptospermum. Conclusions: Infection by a native parasitic plant had strong negative effectson the physiology and above-ground biomass allocation of anintroduced species and was correlated with increased plant mortality.The greater impact of the parasite on the introduced host maybe due to either the greater resources that this host providesor increased resistance to infection by the native host. Thisdisparity of effects between introduced host and native hostindicates the potential for Cassytha to be exploited as a controltool.  相似文献   

2.
1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour.  相似文献   

3.
The high quality of leguminous hosts for the parasitic plantRhinanthus minor (in terms of growth and fecundity), comparedwith forbs (non-leguminous dicots) has long been assumed tobe a function of the legume's ability to fix atmospheric nitrogen(N) from the air and the potential for direct transfer of compatibleamino compounds to the parasite. Using associations betweenRhinanthus minor and Vicia faba (Fabaceae) that receive N eitherexclusively via symbiotic associations with rhizobia supplyingorganic N fixed from N2 or exclusively through the supply ofinorganic nitrate to the substrate, the underlying reasons forthe quality of legumes as hosts for this parasite are unravelled.It is shown that sole dependence of the host, V. faba, on Nfixation results in lower growth of the attached parasite thanwhen the host is grown in a substrate supplied exclusively withinorganic N. In contrast, the host plants themselves achieveda similar biomass irrespective of their N source. The physiologicalbasis for this is investigated in terms of N and abscisic acid(ABA) partitioning, haustorial penetration, and xylem sap aminoacid profiles. It is concluded that legume N fixation does notunderpin the quality of legumes as hosts for Rhinanthus butrather the well-developed haustorium formed by the parasite,coupled with the lack of defensive response of the host tissuesto the invading haustorium and the presence of sufficient nitrogenouscompounds in the xylem sap accessible to the parasite haustoria,would appear to be the primary factors influencing host qualityof the legumes. Key words: ABA, haustorium, legume, nitrogen fixation, nodules, parasitic plant Received 14 November 2007; Revised 7 January 2008 Accepted 8 January 2008  相似文献   

4.
ONOFEGHARA  F. A. 《Annals of botany》1971,35(5):1113-1129
Culturing of organs in vitro has been successfully employedin studies on morphogenesis and nutritional requirements ofparasitic and semi-paraaitic angiosperms. Tapinanthus bangwensis,a semi-parasite, has been successfully cultured on chemicallydefined media. By and large the parasite will thrive well ina medium of mineral salts and sucrose at its optimal concentration(4 per cent). However, the parasite is able to metabolize awide range of sugars most of which show similar concentrationoptima Although the growth in vivo was simulated in vitro inthe early stages, it was found that in the later stages growthin vitro was much slower than growth in vivo. The growth differencesobserved in the different media may reflect some of the physiologicaldifferences that are responsible for the selective nature ofthe parasite's development and establishment on different hosts  相似文献   

5.
Native Parasites Adopt Introduced Bivalves of the North Sea   总被引:3,自引:3,他引:0  
Introduced species may have a competitive advantage over native species due to a lack of predators or pathogens. In the North Sea region, it has been assumed that no metazoan parasites are to be found in marine introduced species. In an attempt to test this assumption, we found native parasites in the introduced bivalves Crassostrea gigas and Ensis americanus with a prevalence of 35% and 80%, respectively, dominated by the trematode Renicola roscovita. When comparing these introduced species with native bivalves from the same localities, Mytilus edulis and Cerastoderma edule, trematode intensity was always lower in the introduced species. These findings have three major implications: (1) introduced bivalves are not free of detrimental parasites which raises the question whether introduced species have an advantage over native species after invasion, (2) introduced bivalves may divert parasite burdens providing a relief for native species and (3) they may affect parasite populations by influencing the fate of infectious stages, ending either in dead end hosts, not being consumed by potential final hosts or by adding new hosts. Future studies should consider these implications to arrive at a better understanding of the interplay between native parasites and introduced hosts.  相似文献   

6.
Disease‐mediated threats posed by exotic species to native counterparts are not limited to introduced parasites alone, since exotic hosts frequently acquire native parasites with possible consequences for infection patterns in native hosts. Several biological and geographical factors are thought to explain both the richness of parasites in native hosts, and the invasion success of free‐living exotic species. However, the determinants of native parasite acquisition by exotic hosts remain unknown. Here, we investigated native parasite communities of exotic freshwater fish to determine which traits influence acquisition of native parasites by exotic hosts. Model selection suggested that five factors (total body length, time since introduction, phylogenetic relatedness to the native fish fauna, trophic level and native fish species richness) may be linked to native parasite acquisition by exotic fish, but 95% confidence intervals of coefficient estimates indicated these explained little of the variance in parasite richness. Based on R2‐values, weak positive relationships may exist only between the number of parasites acquired and either host size or time since introduction. Whilst our results suggest that factors influencing parasite richness in native host communities may be less important for exotic species, it seems that analyses of general ecological factors currently fail to adequately incorporate the physiological and immunological complexity of whether a given animal species will become a host for a new parasite.  相似文献   

7.
Aim To use a comparative approach to understand parasite demographic patterns in native versus introduced populations, evaluating the potential roles of host invasion history and parasite life history. Location North American east and west coasts with a focus on San Francisco Bay (SFB). Methods Species richness and prevalence of trematode parasites were examined in the native and introduced ranges of two gastropod host species, Ilyanassa obsoleta and Littorina saxatilis. We divided the native range into the putative source area for introduction and areas to the north and south; we also sampled the overlapping introduced range in SFB. We dissected 14,781 snails from 103 populations and recorded the prevalence and identity of trematode parasites. We compared trematode species richness and prevalence across the hosts’ introduced and native ranges, and evaluated the influence of host availability on observed patterns. Results Relative to the native range, both I. obsoleta and L. saxatilis have escaped (lost) parasites in SFB, and L. saxatilis demonstrated a greater reduction of trematode diversity and infection prevalence than I. obsoleta. This was not due to sampling inequalities between the hosts. Instead, rarefaction curves suggested complete capture of trematode species in native source and SFB subregions, except for L. saxatilis in SFB, where infection was extremely rare. For I. obsoleta, infection prevalence of trematodes using fish definitive hosts was significantly lower in SFB compared to the native range, unlike those using bird hosts. Host availability partly explained the presence of introduced trematodes in SFB. Main conclusions Differential losses of parasite richness and prevalence for the two gastropod host species in their introduced range is probably the result of several mechanistic factors: time since introduction, propagule pressure, vector of introduction, and host availability. Moreover, the recent occurrence of L. saxatilis’ invasion and its active introduction vector suggest that its parasite diversity and distribution will probably increase over time. Our study suggests that host invasion history and parasite life history play key roles in the extent and diversity of trematodes transferred to introduced populations. Our results also provide vital information for understanding community‐level influences of parasite introductions, as well as for disease ecology in general.  相似文献   

8.
Solute composition of root xylem sap of common native hostsof quandong (Santalum acuminatum) was compared with that ofcorresponding xylem sap and ethanolic extracts of endophytictissues of haustoria of the hemiparasite. Each host transporteda characteristic set of organic nitrogenous solutes, but littleor no nitrate, and the data indicated only limited direct flowof amino compounds between xylem streams of hosts and parasite.Proline predominated in the haustorium and xylem ofSantalum,but was at negligible levels in the xylem of most hosts. Sucrose,fructose, glucose, malate and citrate were at high levels inall saps, and fructose especially prominent inSantalum. Chloride,sulphate and phosphate were the principal inorganic anions ofthe xylem. Based on C:N ratios of xylem and dry matter ofSantalumandassuming a 70% or more dependence on the host for N, it wasestimated thatSantalumwould gain approximately one third ofits C requirement for dry matter production heterotrophicallyfrom the xylem of its hosts. Infiltration of xylem of haustoria-bearingroot segments of a major host (Acacia rostellifera) with a rangeof15N labelled substrates resulted in 40–80% of the15Nof endophytes of the attached haustoria being received as proline.Nitrate reductase activity was induced in haustoria followinghost xylem feeding of nitrate. The study concludes that haustoriaofSantalumact as a major site of synthesis and export of prolineand might therefore play an important role in osmotic adjustmentof the parasite and its related acquisition of water from hosts. Root hemiparasite; Santalum acuminatum; 15N labelled substrates; xylem transport; proline; osmoregulation  相似文献   

9.
10.
Observations on the origin and mature structure of the haustoriumof the Western Australian Christmas tree (Nuytsia floribunda)corroborate and extend the findings of earlier workers. We showthat the previously described sclerenchymatous ‘horn’or ‘prong’ formed within the haustorium acts asa sickle-like cutting device which transversely severs the hostroot and then becomes lodged in haustorial collar tissue directlyopposite to that where it originated. The cutting process isdeduced to be rapid and the gland-like fluid filled structurein the haustorium is suggested to generate a hydrostatic forcedriving the device through the host root. The haustorial parenchymacells at the tight junction between the endophytic part of thehaustorium and the cut face of the host root develop balloon-likeoutgrowths which intrude into the lumina of severed xylem vesselsof the host. Experiments feeding 0.05% (w/v) basic fuchsin tofreshly cut ends of host root segments distal to terminally-attachedmature haustoria demonstrate an apoplastic pathway from hostxylem elements fractured at the interface into haustorial parenchyma,and thence through vascular tissue to the haustorium into thetranspiring plant of Nuytsia. Application of labelled water(D2O) to uncut basal roots of potted plants ofAcacia acuminataparasitized by Nuytsia results in labelling of leafy shootsof parasite and host, indicative of haustorial uptake of waterby Nuytsia from host root xylem in the intact association. Measurementsof xylem water potentials of pot-cultured seedling Nuytsia associatedwith a range of hosts, or of mature trees of Nuytsia and partnerwoody hosts in the native habitat, demonstrate consistentlymore negative potentials in the parasite than host, suggestingthat the parasite may regularly obtain xylem water through itshaustorial apparatus. Copyright 2000 Annals of Botany Company Root hemiparasite, Nuytsia floribunda, Loranthaceae, haustorial structure, host–parasite water relations  相似文献   

11.
Dry matter gains and haustorial production of pot-cultured seedlingsof Nuytsia floribunda were assessed after a 12 month periodof association singly with each of a range of potential woodyhost species. One species,Adenanthos cygnorum , of similar sizeto most parasitized hosts, served as measure of response ofNuytsia in a non-benefiting situation. Rated on this basis,all 23 parasitized hosts elicited greater mean dry weights ofNuytsia than when on Adenanthos, and seven of these instanceswere highly significant. Numbers and weights of penetratingand presumably functional haustoria formed on a host were broadlycorrelated with growth benefit to Nuytsia, but there were notableinstances of unusually poor or great benefit from a host relativeto the complement of haustoria involved. Experiments in whichhaustoria-bearing associations of Nuytsia partnered with nodulatedAcacia hosts (Acacia acuminata and A. cyclops) were fed15N2showedsignificant transfer of15N to the parasite, but failed to determinewhether the label had been acquired through haustoria or directlyby Nuytsia roots following turnover of nodule and root residuesof the host in the rooting medium. A parallel study using theunusual non-protein amino acid, djenkolic acid, as a markerof benefit from the djenkolic acid-containing host A. cyclops,showed appearance and progressive build-up of the compound infoliage of Nuytsia over a 6 month period after partnering thespecies in pot culture. Presence of the compound at final harvestin xylem sap of both partners but not in soil solution of thecultures strongly indicated xylem transfer via haustoria asthe principal avenue for N benefit to the parasite. Resultsare discussed in relation to a recent evaluation of haustorialstructure and functioning of N. floribunda. Copyright 2000 Annalsof Botany Company Root hemiparasite, Nuytsia, Loranthaceae, growth benefit, haustorial production, nitrogen transfer from hosts  相似文献   

12.
A number of hypotheses exist to explain aggregated distributions, but they have seldom been used to investigate differences in parasite spatial distribution between native and introduced hosts. We applied two aggregation models, the negative binomial distribution and Taylor’s power law, to study the aggregation patterns of helminth populations from Liza haematocheilus across its native (Sea of Japan) and introduced (Sea of Azov) distribution ranges. In accordance with the enemy release hypothesis, we predicted that parasite populations in the introduced host range would be less aggregated than in the native host area, because aggregation is tightly constrained by abundance. Contrary to our expectation, aggregation of parasite populations was higher in the introduced host range. However, the analyses suggested that the effect of host introduction on parasite aggregation depends on whether parasite species, or higher level taxonomic groups, were acquired in or carried into the new area. The revealed similarity in the aggregation parameters of co-introduced monogeneans can be attributed to the repeatability and identity of the host–parasite systems. In contrast, the degree of aggregation differed markedly between regions for higher level taxa, which are represented by the native parasites in the Sea of Japan versus the acquired species in the Sea of Azov. We propose that the host species plays a crucial role in regulating infra-population sizes of acquired parasites due to the high rate of host-induced mortality. A large part of the introduced host population may remain uninfected due to their resistance to native naïve parasites. The core concept of our study is that the comparative analysis of aggregation patterns of parasites in communities and populations, and macroecological relationships, can provide a useful tool to reveal cryptic relationships in host–parasite systems of invasive hosts and their parasites.  相似文献   

13.
Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish''s introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively associated with the condition index of the native grouper but not that of the lionfish or lizardfish. While two co-occurring native fishes were more heavily parasitized compared to lionfish in Panama any indirect benefits of differential parasitism requires further investigation. Future parasitological surveys of lionfish across the eastern coast of North America and the Lesser Antilles would further resolve geographic patterns of parasitism in invasive lionfish.  相似文献   

14.
A model is formulated to investigate the ability of chytridparasites to survive or become epidemic within populations oftheir algal hosts The model is used for an analysis of the effectsof light on the occurrence of Rhizophydium planktonicum Canteremend., a chytrid parasite of the freshwater diatom Asterionellaformosa Hass., using the information on the growth parametersof host and parasite presented in the first part of this article(J. Plankton Res ., 13, 103–117). According to the model,conditions for survival of the parasite are optimal when thehost grows at saturating light conditions. Under limiting lightconditions, Rhizophydium needs higher host densities in orderto maintain itself. The parasite is not able to survive prolongedperiods of severe light limitation of the host Epidemic development,however, turned out to be facilitated by a moderate light limitationof the host. Both light saturation and severe light limitationhamper epidemic development, but in the first case, epidemicdevelopment is still possible at sufficiently high host densities.  相似文献   

15.
Olax phyllanthi was found to parasitize a wide range of taxain the native habitat in coastal heath, South-West Australia.All major life and growth forms were regularly exploited, includingmost woody dicotyledons (except members of the Myrtaceae), afew monocotyledons and cohabiting root hemiparasites. Initiationof haustoria occurred mostly in autumn (southern hemisphere),with some senescing the following summer, and others survivinguntil replaced by a new generation of haustoria the followingautumn. Seedlings increased in dry matter and contents of N,P, K, Mg and Ca during preparasitic development, but did notsurvive beyond 6 months if failing to establish haustoria ona suitable host. Plant dry matter, mineral content and haustorialnumber increased exponentially during subsequent parasitic development.Mean shoot:root d. wt ratios of 1st to 3rd-year plants lay withinthe range 1.2–1.4. Root systems were laterally extensiveand restricted to the top 40 cm of rooting substrate. Mean totalroot lengths of 2nd- and 3rd-year plants were 7.1m (n = 5) and60.9 m (n = 5), respectively. Haustoria comprised 0.7–3.5%of plant d. wt, with a mean of 7.9 haustoria (n = 10, 2nd- and3rd-year plants) per metre of root length. Comparisons of mineralconcentrations in dry matter of O. phyllanthi and of a rangeof commonly parasitized hosts showed the parasite to be muchricher on average than its hosts in K, P, and to a lesser extentin N, but not noticeably different in Mg and Ca. Olax, root hemiparasite, mineral nutrition, haustoria, resource allocation  相似文献   

16.
Brood parasites dramatically reduce the reproductive successof their hosts, which therefore have developed defenses againstbrood parasites. The first line of defense is protecting thenest against adult parasites. When the parasite has successfullyparasitized a host nest, some hosts are able to recognize andreject the eggs of the brood parasite, which constitutes the secondline of defense. Both defense tactics are costly and would be counteractedby brood parasites. While a failure in nest defense implies successfulparasitism and therefore great reduction of reproductive successof hosts, a host that recognizes parasitic eggs has the opportunityto reduce the effect of parasitism by removing the parasiticegg. We hypothesized that, when nest defense is counteractedby the brood parasite, hosts that recognize cuckoo eggs shoulddefend their nests at a lower level than nonrecognizers becausethe former also recognize adult cuckoos. Magpie (Pica pica) hoststhat rejected model eggs of the brood parasitic great spottedcuckoo (Clamator glandarius) showed lower levels of nest defensewhen exposed to a great spotted cuckoo than when exposed toa nest predator (a carrion crow Corvus corone). Moreover, magpiesrejecting cuckoo eggs showed lower levels of nest defense againstgreat spotted cuckoos than nonrecognizer magpies, whereas differencesin levels of defense disappeared when exposed to a carrion crow.These results suggest that hosts specialize in antiparasitedefense and that different kinds of defense are antagonistically expressed.We suggest that nest-defense mechanisms are ancestral, whereasegg recognition and rejection is a subsequent stage in the coevolutionaryprocess. However, host recognition ability will not be expressedwhen brood parasites break this second line of defense.  相似文献   

17.
The water and nitrogen relationships of the xylem-tapping roothemiparasite, quandong (Santalum acuminatum) and its principalhosts were examined at a series of sites in native coastal heathlandsof south west Australia. Assessments based on densities of above-groundbiomass, ground cover and frequencies of haustoria on host rootsindicated that woody N2fixers (legumes andAllocasuarina) wereprincipal hosts ofSantalum. 15N values for shoot dry matterof component species suggested these N2fixers were strongly(70% or more) dependent on atmospheric N and thatSantalumderivedN principally from these species. Structural studies of haustoriashowed the interface with host xylem to be almost entirely comprisedof parenchymatous tissue. No luminal continuities were observedbetween xylem conducting elements of the partners. Formationand functional life of haustoria were closely coordinated withseasonal growth of hosts, with some haustoria surviving summerand overlapping functionally with new ones establishing in thenext autumn. Transpiration and photosynthetic rates of the parasitewere consistently less and water use efficiencies very similarto those of the principal hostAcacia rostellifera. 13C valuesof foliage ofSantalumand this host were similar, but large variationsin 13C values for above-ground dry matter of parasite and hostsbetween study sites prevented evaluations of water stress orwater-use-efficiency based on carbon isotope discrimination.Specific hydraulic conductivities of roots ofSantalumwere consistentlylower than those ofAcacia, a finding consistent with more conservativewater use by the parasite than the host. Santalum acuminatum; root hemiparasite; 15N discrimination; water relations; haustorial structure; root conductivity  相似文献   

18.
Disease-mediated impacts of exotic species on their native counterparts are often ignored when parasite-free individuals are translocated. However, native parasites are frequently acquired by exotic species, thus providing a mechanism through which native host-parasite dynamics may be altered. In Argentina, multiple exotic salmonids are host to the native fish acanthocephalan parasite Acanthocephalus tumescens. Field evidence suggests that rainbow trout, Oncorhynchus mykiss, may be a major contributor to the native parasite’s population. We used a combination of experimental infections (cystacanth—juvenile worm transmission from amphipod to fish; post-cyclic—adult worm transmission between definitive fish hosts) and dynamic population modelling to determine the extent to which exotic salmonid hosts may alter A. tumescens infections in native freshwater fish. Experimental cystacanth infections demonstrated that although A. tumescens establishes equally well in native and exotic hosts, parasite growth and maturity is superior in exotic O. mykiss. Experimental post-cyclic infections also showed greater establishment success of A. tumescens in O. mykiss, though post-cyclic transmission did not result in greater parasite size or maturity. Dynamic population modelling, however, suggested that exotic salmonids may have a very limited influence on the A. tumescens population overall, due to the majority of A. tumescens individuals being maintained by more abundant native hosts. This research highlights the importance of considering both a host’s relative density and its competency for parasites when evaluating whether exotic species can modify native host-parasite dynamics.  相似文献   

19.
ATSATT  P. R.; HANSEN  I. M. 《Annals of botany》1978,42(6):1271-1276
Three lines of evidence correlate the parasitic performane ofOrthocarpus purpuruscens Benth. with numbers of haustoria produced:(i) the pattern of variation in numbers of haustoria producedin agar culture with different chemical stimuli correspondsclosely to the variation pattern of parasite vigour producedby a range of host plants; (ii) the progeny of plants demonstratingvigorous growth with hosts produce significantly more haustoriathan progeny from parents exhibiting weak parasitic development;(iii) conversely, seedlings that produce high numbers of haustoriain agar culture grow significantly better when transplantedwith hosts than do seedlings with low numbers of haustoria.Haustoria-forming potential is heritable, but highly influencedby environmental factors. Potential number of haustoria is aproduct of the concentration and/or quality of haustoria inducingstimuli, and the parasite's individual ability to respond. Intra-populationdifferences in parasitic development appear to be largely dueto the quantity rather than the quality of substrates receivedfrom host plants. haustoria, Orthocarpus purpurarcens, parasitic development  相似文献   

20.
The introduction of species is of increasing concern as invaders often reduce the abundance of native species due to a variety of interactions like habitat engineering, predation and competition. A more subtle and not recognized effect of invaders on their recipient biota is their potential interference with native parasite–host interactions. Here, we experimentally demonstrate that two invasive molluscan filter-feeders of European coastal waters interfere with the transmission of free-living infective trematode larval stages and hereby mitigate the parasite burden of native mussels (Mytilus edulis). In laboratory mesocosm experiments, the presence of Pacific oysters (Crassostrea gigas) and American slipper limpets (Crepidula fornicata) reduced the parasite load in mussels by 65–77% and 89% in single and mixed species treatments, respectively. Both introduced species acted as decoys for the trematodes thus reducing the risk of hosts to become infected. This dilution effect was density-dependent with higher reductions at higher invader densities. Similar effects in a field experiment with artificial oyster beds suggest the observed dilution effect to be relevant in the field. As parasite infections have detrimental effects on the mussel hosts, the presence of the two invaders may elicit a beneficial effect on mussels. Our experiments indicate that introduced species alter native parasite–hosts systems thus extending the potential impacts of invaders beyond the usually perceived mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号