首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodynamic therapy (PDT) is a treatment method using light and photosensitizers (PSs), which is categorized as a non-invasive surgery treatment for cancers. When the tumor is exposed to a specific light, the PSs become active and generate reactive oxygen species (ROS), mainly singlet oxygen which kills nearby cancer cells. PDT is becoming more widely recognized as a valuable treatment option for localized cancers and pre-cancers of skin as it has no long-term effects on the patient. But, due to the limited penetration rate of light into the skin and other organs, PDT can’t be used to treat large cancer cells or cancer cells that have grown deeply into the skin or other organs. Hence, in this study, our focus centers on synthesizing glucose-conjugated phthalocyanine (Pc) compatible with near-infrared (NIR) irradiation as second-generation photosensitizer, so that PDT can be used in a wider range to treat cancers without obstacles.  相似文献   

2.
Destruction of unwanted cells and tissues in photodynamic therapy (PDT) is achieved by a combination of light, oxygen, and light-sensitive molecules. The advantages of PDT compared to other traditional treatment modalities, and the shortcomings of the currently used photosensitizers, have stimulated the search for new, more efficient photosensitizer candidates. Ability to inflict selective damage to particular proteins through photo-irradiation would significantly advance the design of highly specific photosensitizers. Achieving this objective requires comprehensive knowledge concerning the interactions of the particular photosensitizer with specific targets. Here, we summarize the effects of Zn(II) N-alkylpyridylporphyrin-based photosensitizers on intracellular (metabolic, antioxidant and mitochondrial enzymes) and membrane proteins. We emphasize how the structural modifications of the porphyrin side substituents affect their lipophilicity, which in turn influence their subcellular localization. Thus, Zn(II) N-alkylpyridylporphyrins target particular cellular sites and proteins of interest, and are more efficient than hematoporphyrin D, whose commercial preparation (Photofrin) has been clinically approved for PDT.  相似文献   

3.
Photodynamic therapy (PDT), a new treatment modality for localized cancers involving the selective interaction of visible light with photosensitizers, such as hematoporphyrin derivatives (HpD) or dihematoporphyrin ether/ester (DHE) (Photofrin II). Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (i) absorption of photosensitizing agent; (ii) selective retention of photosensitizer in tumors and (iii) irradiation of sensitized tumor by laser irradiation. This paper provides a review of photosensitizers, photochemistry, subcellular targets, side effects and lasers involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vivo and in vitro mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

4.
Photodynamic therapy (PDT) and photothermal therapy (PTT) are emerging modalities for the treatment of tumors and nonmalignant conditions, based on the use of photosensitizers to generate singlet oxygen or heat, respectively, upon light (laser) irradiation. They have potential advantages over conventional treatments, being minimally invasive with precise spatial‐temporal selectivity and reduced side effects. However, most clinically employed PDT agents are activated at visible (vis) wavelengths for which the tissue penetration and, hence, effective treatment depth are compromised. In addition, the lipophilicity of near‐infrared (NIR) photothermal agents limits their use and efficiency. To achieve combined PDT/PTT effects, both excitation wavelengths need to be tuned into the NIR spectral window of biological tissues. This paper reports the synthesis of neodymium‐doped upconversion nanoparticles (NaYF4:Yb,Er,Nd@NaYF4:Nd) that convert 800 nm light into vis wavelengths, which can then activate conventional photosensitizers on the nanoparticle surface for PDT. Covalently bonded IR‐780 dyes can readily be activated by 800 nm laser irradiation. The PEGylated nanoplatform exhibited a narrow size distribution, good stability and efficient generation of singlet oxygen under laser irradiation. The in vitro photocytotoxicity of this engineered nanoplatform as either a PDT or PTT agent in HeLa cells is demonstrated, while fluorescence microscopy in nanoplatform‐incubated cells highlights its potential for bioimaging.  相似文献   

5.
The success of photodynamic therapy (PDT), as a minimally invasive approach, in treating both neoplastic and non-neoplastic diseases has stimulated the search for new compounds with potential application in PDT. We have previously reported that Zn(II) N-alkylpyridylporphyrins (ZnTM-2(3,4)-PyP4+ and ZnTE-2-PyP4+) can act as photosensitizers and kill antibiotic-resistant bacteria. This study investigated the photosensitizing effects of the isomers of ZnTMPyP4+ (ZnTM-2(3,4)-PyP4+) and respective ligands on a human colon adenocarcinoma cell line. At 10 μM and 30 min of illumination the isomeric porphyrins completely inhibited cell growth, and at 20 μM killed approximately 50% of the cancer cells. All these effects were entirely light-dependent. The isomers of the ZnTMPyP4+ and the respective ligands show high photosensitizing efficiency and no toxicity in the dark. Their efficacy as photosensitizers is comparable to that of hematoporphyrin derivative (HpD).  相似文献   

6.
Photodynamic therapy (PDT) is a treatment for cancer and non-cancerous lesions involving light and a sensitizing drug, a so-called photosensitizer. Photosensitizers for PDT usually accumulate in tumour tissues with some selectivity. Thus, malignant and abnormal cells can be destroyed by PDT which acts by producing singlet oxygen and possible other reactive oxygen species. However, the efficiency of PDT is often limited by shallow light penetration into tissue. In some cases one treatment modality cannot cure a patient because of treatment limitations and/or side effects. In recent years, many preclinical studies have indicated that the therapeutic outcome of PDT can be improved, doses and side effects lowered by combination with immunotherapy. Most experiments have been done with animals and cell lines. This review summarizes the current knowledge about different immunotherapeutic approaches which can be used to improve effectiveness and extend the applications of PDT in clinics.  相似文献   

7.
Photodynamic therapy (PDT) is a clinically approved treatment for the ocular condition age-related macular degeneration, and certain types of cancer. PDT is also under investigation for other ocular, as well as, immune-mediated and cardiovascular indications. PDT is a two step procedure. In the first step, the photosensitizer, usually a porphyrin derivative, is administered and taken up by cells. The second step involves activation of the photosensitizer with a specific wavelength of visible light. Exposure to light of an activating wavelength generates reactive oxygen species within cells containing photosensitizer. PDT with porphyrin photosensitizers induces rapid apoptotic cell death, an event which may be attributed to the close association of these compounds with mitochondria. Thus, PDT is an attractive method to treat ailments such as cancer, viral infections, autoimmune disorders and certain cardiovascular diseases in which the apoptotic program may be compromised. The present review examines the cellular events triggered at lethal and sublethal PDT doses and their relationship to the subsequent effects exerted upon cells.  相似文献   

8.
The presence of light, oxygen and photosensitizer (organic dye) is required for the photodynamic effect. Light and photosensitizer are harmless by themselves, but when combined with oxygen, reactive oxygen species (ROS) can be produced. This photodynamic effect is used in photodynamic therapy (PDT); the production of ROS as lethal cytotoxic agents can inactivate tumor cells. However, during PDT, there are many difficulties, so it is not possible to excite the photosensitizer using a laser, a source of light at the wavelengths specific to the photosensitizer (in visible region of the spectrum). Chemiluminescence is the light emission as a result of a chemical reaction. It is possible to use a chemiluminescent mixture to excite the photosensitizer even if the light emission does not conform to the absorption maximum of the photosensitizer. Luciferin and luminol have been used as chemiluminescent compounds (energizers) for the excitation of the photosensitizers. The aim of this work was to compare the chemiexcitation of some selected photosensitizers (e.g. fluorescein, eosin, methylene blue, hypericin and phthalocyanines) by chemiluminescent mixtures containing luminol (high chemiluminescent quantum yield) or phthalhydrazide (low chemiluminescent quantum yield) on some Gram‐positive (Enterococcus faecalis, Staphylococcus aureus) and Gram‐negative (Pseudomonas aeruginosa, E. coli) bacteria and some cell lines (NIH3T3 and MCF7). The efficiency of the chemiexcitation was dependent on the kind of the photosensitizer and on the type of the bacterial strain or cell line and was independent of the energizers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Chinese hamster ovary (CHO) cells and T24 human bladder transitional carcinoma cells were treated with the photosensitizers aluminum phthalocyanine (AlPc) and hematoporphyrin derivative (HPD), respectively. Exposure of both sensitized cell lines to red light caused an immediate increase of cytoplasmic free calcium, [Ca2+]i, reaching a peak within 5-15 min after exposure and then returning to basal level (approximately 200 nM). The level of the peak [Ca2+]i depended on the light fluence, reaching a maximum of 800-1000 nM at light doses that kill about 90% of the cells. Loading the cells with the intracellular calcium chelators quin2 or BAPTA prior to light exposure enhanced cell killing. This indicates that increased [Ca2+]i after photodynamic therapy (PDT) contributed to survivability of the treated cells by triggering a cellular rescue response. The results of experiments with calcium-free buffer and calcium chelators indicate that both in CHO cells treated with AlPc and with HPD-PDT of T24 cells extracellular Ca2+ influx is mainly responsible for elevated [Ca2+]i. PDT is unique in triggering a cell rescue process via elevated [Ca2+]i. Other cytotoxic agents, e.g., H2O2, produce sustained increase of [Ca2+]i that is involved in the pathological processes leading to cell death.  相似文献   

10.
The efficacy of new porphyrin amino acid conjugates as photosensitizers for photodynamic therapy (PDT) were assayed in vitro on tumoral (HeLa) and on non tumoral (HaCaT) human cell lines. The conjugates stable in liposomes are able to penetrate efficiently in the cytoplasm of cultured cancer and normal cells. No dark cytotoxicity is observed at the same concentration used for PDT cell treatment and during long incubation time (24 h). The cell survival after the PDT treatment with visible light is dependent upon light exposure level and compound concentration. The tested compounds show higher photocytotoxicity in tumoral HeLa cells than in no tumoral HaCaT cells. The results suggest that these amino acid porphyrin conjugates are potential photosensitizers for PDT.  相似文献   

11.
光动力治疗( photodynamic therapy,PDT )是光敏剂在特定波长光源的激发下、在氧分子存在下产生细胞毒性物质的一种治疗方法,主要用于抗肿瘤治疗.目前临床应用的光敏剂对肿瘤细胞的靶向性比较有限,近来的一个热门研究方向是靶向性光敏剂.结合作者多年来在该方向的工作,综合近年来光敏剂研究的发展,比较全面地阐述了带有功能性多肽的靶向性光敏剂及其在光动力治疗中的应用.阐述多肽作为靶向基团的优势,总结了包括透膜多肽、血管靶向多肽、细胞受体靶向多肽等功能多肽与光敏剂偶合物的生物效应,说明了多肽能够实现光敏剂的靶向作用.  相似文献   

12.
Photodynamic therapy (PDT) is a selective treatment modality against cancer. PDT is based on the preferential retention of photosensitizers (PSs), in the tumour and subsequent light exposure which activates the PS and generates reactive oxygen species. Multimodality therapy is increasingly relevant in cancer treatment and PDT has been shown as an effective adjuvant to other anti-cancer modalities. The present study reports on the combination of PDT and an epidermal growth factor receptor (EGFR) specific tyrosine kinase inhibitor (TKI), Tyrphostin AG1478. The combination was studied in two cell lines; A-431 and NuTu-19, expressing EGFR and sensitive to Tyrphostin treatment, but with different sensitivity towards photochemical EGFR damage. A-431 cells were treated with the PS meso-tetraphenylporphine with 2 sulfonate groups on adjacent phenyl rings (TPPS(2a)) in order to target mainly the endo/lysosomal compartments (18 h incubation followed by a 4 h chase in drug-free medium) or the plasma membrane (30 min incubation) upon light exposure. The EGFR was inhibited after PDT in A-431 cells only when TPPS(2a) was located on the plasma membrane, but both treatment regimes resulted in synergistic inhibition of cell growth when combined with Tyrphostin. TPPS(2a) treatment of NuTu-19 cells, designed for endo/lysosomal localization, followed by light attenuated EGFR phosphorylation but resulted in additive or antagonistic effects on cell growth when Tyrphostin was administered prior to or after PDT respectively. It was therefore concluded that photochemical damage of EGFR does not predict the treatment outcome when PDT is combined with Tyrphostin.  相似文献   

13.
Photodynamic therapy (PDT) conducted by photosensitizers producing cytotoxic reactive oxygen species (ROS) under light irradiation is widely used in cancer treatment. A great number of photoactive nanoscale metal–organic frameworks (NMOFs) have been prepared for PDT. With the development of biomedicine and nanotechnology, many synergistic cancer therapies have emerged. In this mini-review, an overview on the latest progress in the application of NMOFs in PDT is provided, with emphasis on the recent emergence of some synergistic therapies.  相似文献   

14.
Photodynamic therapy (PDT) is based on photosensitizers activated by light of appropriate wavelength. Their activation leads to generation of singlet oxygen and free radicals responsible for the cytotoxic effect. The aim of this project was to compare the bactericidal effect of PDT using different porphyrin photosensitizers against a methicillin-resistant Staphylococcus aureus strain. Exogenous sensitizers (protoporphyrin IX and newly synthesized derivative, protoporphyrin diarginate) induced a 3 log10-unit reduction in bacterial viable counts. With the use of endogenous, ALA-induced porphyrins, a 1.6 log10-unit reduction was obtained. The sensitizers tested executed their antibacterial activity with no essential change in the antibiotic resistance pattern of the studied strain.  相似文献   

15.
Photodynamic therapy (PDT) uses exogenously administered photosensitizers activated by light to induce cell death or modulation of immunological cascades, presumably via formation of reactive oxygen species (ROS). 5-Aminolevulinic acid (ALA) mediated photosensitization is increasingly used for the treatment of nonmelanoma skin cancer and other indications including benign skin disorders. Long-term side effects of this investigational modality are presently unknown. Just as tumor treatments such as ionizing radiation and chemotherapy can cause secondary tumor induction, PDT may potentially have a carcinogenic risk. Evaluation of the biological effects of ALA in absence of activating light and analysis of the mechanism of ALA-PDT and porphyrin-type photosensitizers mediated photosensitization indicate that this therapy has a pro-oxidant and genotoxic potential. However, porphyrin type molecules also possess antioxidant and antimutagenic properties. ALA-PDT delays photocarcinogenesis in mice, and topical ALA alone does not increase skin cancer incidence in these animals. Patients with increased tissue levels of ALA have an increased incidence of internal carcinoma, however, it is not clear whether this relationship is casual or causal. There is no evidence indicating higher rates of skin cancer in patients with photosensitivity diseases due to presence of high protoporphyrin IX (PP) levels in skin. Overall, the presently available data indicate that the risk for secondary skin carcinoma after topical ALA-PDT seems to be low, but further studies must be carried out to evaluate the carcinogenic risk of ALA-PDT in conditions predisposed to skin cancer.  相似文献   

16.
Photodynamic therapy (PDT), used for cancer treatment, is also an alternative method for eradication of drug-resistant bacteria. This method utilizes a nontoxic light-activated dye, called a photosensitizer, and visible light to produce reactive oxygen species that lead to bacterial cell death. The purpose of this study was to investigate the bactericidal effect of PDT using lanthanide derivatives of meso-tetra(N-methyl-4-pyridyl)porphine against Staphylococcus aureus strains. The new photosensitizers appeared to be photodynamically ineffective. No enhancement of antistaphylococcal activity of TMPyP was observed after the conjugation of the porphyrin with lanthanide ions. Additionally, a significant difference in the susceptibility of two bacterial strains to unmodified TMPyP was observed.  相似文献   

17.
Photodynamic therapy (PDT) is a relatively new type of treatment in cancer, based on a photosensitizer, visible light and molecular oxygen. Reactive oxygen species are generated, causing tumor cells death by apoptosis or necrosis. Significant nowadays research efforts are focused on finding new photosensitizers with antineoplastic activity and an acceptable toxicological profile. Although consistent information exists regarding PDT in solid tumors, relatively few data are available for PDT of blood cancers. Therefore, we carried out a comparative study on lymphoblastic K562 cells and human normal peripheral blood mononuclear cells (PBMC) treated at a density of 2 x 10(5) cells/mL with 5,10,15,20-tetra-sulphophenyl-porphyrin (TSPP) and then irradiated with He-Ne laser light (lamda = 632.8 nm). The following cell functions were investigated: viability, multiplication, RNA synthesis, total RNA levels and apoptosis. After irradiation, the viability of TSPP-loaded tumor cells decrease, the multiplication rate and the total RNA level are drastically reduced and cells undergo apoptosis. TSPP alone loaded into cells but not activated by irradiation, does not affect these cell parameters. Human normal PBMC subjected to TSPP loading and laser-irradiation develop a different cellular response, their viability and proliferative capacity not being altered by experimental PDT. Accordingly, it appears that TSPP is a non-aggressive compound for cellular physiology and becomes cytotoxic only by irradiation; moreover laser-activated TSPP affects only cells that have a tumoral pattern.  相似文献   

18.
Photodynamic therapy (PDT) is a noninvasive treatment of some diseases including cancer. We have developed poly(ethylene glycol) (PEG)-attached dendrimers as a drug-carrier candidate. In this study, we prepared nanocapsules of photosensitizers using PEG-attached dendrimers for application to PDT. Two PEG-attached dendrimers derived from poly(amido amine) (PAMAM) and poly(propylene imine) (PPI) dendrimers (PEG-PAMAM and PEG-PPI) were synthesized, and rose bengal (RB) and protoporphyrin IX (PpIX) were used as photosensitizers. Results showed that fewer PpIX molecules were encapsulated by both PEG-attached dendrimers than RB, but the complexes were more stable under physiological conditions. Furthermore, we demonstrated that PEG-PPI held photosensitizers in a more stable manner than PEG-PAMAM because of their inner hydrophobicity. We described the cytotoxicity of the complexes of photosensitizers induced by light irradiation in vitro. The complex of PpIX with PEG-PPI exhibited efficient cytotoxicity, compared with free PpIX. It was suggested that the cytotoxicity was caused by the high level of singlet oxygen production and the efficient delivery to mitochondria. Our results suggest that these PEG-attached dendrimers are a promising vehicle for PDT.  相似文献   

19.
Photodynamic therapy (PDT) is a targeted treatment modality where photosensitizers accumulate into cells and are selectively activated by light leading to the production of toxic species and cell death. Focusing the action of photosensitizers to a unique intracellular target may enhance their cytotoxicity. In this study, we demonstrate that the routing of the porphyrin-based photosensitizer chlorin e(6), to the nucleus of cells can significantly alter its toxicity profile. The cellular localization of chlorin e(6) was achieved by coupling the chromophore during solid-phase synthesis to a nucleus-directed linear peptide (Ce6-peptide) or a branched peptide (Ce6-loligomer) composed of eight identical arms displaying the sequence of the Ce6-peptide. These constructs incorporated signals guiding their cytoplasmic uptake and nuclear localization. Ce6-peptide and Ce6-loligomer displayed an enhanced photodynamic activity compared to unconjugated chlorin e(6), lowering the observed CD(50) values for CHO and RIF-1 cells by 1 or more orders of magnitude. The intracellular accumulation of Ce6-peptide and Ce6-loligomer was assessed by electron and confocal microscopy as well as by flow cytometry. Constructs were internalized by cells within an hour and by 6 h, the release of active oxygen species could be observed within the nucleus of cells pretreated with Ce6-loligomer. These results highlight the utility of designing peptides as vehicles for regulating the intracellular distribution of photosensitizers such as chlorin e(6) in order to maximize their efficacy in PDT.  相似文献   

20.
近年来应用光动力技术治疗胃癌取得了可喜的进步,它对各个时期的胃癌均有比较满意的临床效果。本文通过对国内外近年来用光动力技术治疗胃癌方面的文献进行综述,系统阐述光动力运用于胃癌治疗这一项技术的原理、机制,光敏剂、光源及临床效果等方面,并总结了这项技术在治疗胃癌方面的优点和相关问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号