首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Acne vulgaris afflicts more than fifty million people in the United State and the severity of this disorder is associated with the immune response to Propionibacterium acnes (P. acnes). Systemic therapies for acne target P. acnes using antibiotics, or target the follicle with retinoids such as isotretinoin. The latter systemic treatment is highly effective but also carries a risk of side effects including immune imbalance, hyperlipidemia, and teratogenicity. Despite substantial research into potential new therapies for this common disease, vaccines against acne vulgaris are not yet available.

Methods and Findings

Here we create an acne vaccine targeting a cell wall-anchored sialidase of P. acnes. The importance of sialidase to disease pathogenesis is shown by treatment of a human sebocyte cell line with recombinant sialidase that increased susceptibility to P. acnes cytotoxicity and adhesion. Mice immunized with sialidase elicit a detectable antibody; the anti-sialidase serum effectively neutralized the cytotoxicity of P. acnes in vitro and P. acnes-induced interleukin-8 (IL-8) production in human sebocytes. Furthermore, the sialidase-immunized mice provided protective immunity against P. acnes in vivo as this treatment blocked an increase in ear thickness and release of pro-inflammatory macrophage inflammatory protein (MIP-2) cytokine.

Conclusions

Results indicated that acne vaccines open novel therapeutic avenues for acne vulgaris and other P. acnes-associated diseases.  相似文献   

2.
Propionibacterium acnes have been recognized as one of the main causative agents in pathogenesis of acne. Twenty one isolates of P. acnes isolated from acne lesions were screened for lipase and protease activity which are reported to be associated in acne and inflammation. Interestingly, all P. acnes isolates demonstrated lipase activity. Similarly, 90% of test P. acnes produced protease enzyme. Antibacterial activity of the ethanol extract of Rhodomyrtus tomentosa (Aiton) Hassk. leaves and rhodomyrtone, its principle compound were tested against P. acnes using broth macrodilution method. The MIC(90) values of the ethanol extract and rhodomyrtone were 32 and 0.5 μg/mL, respectively. The numbers of the bacterial cells were reduced at least 99% after treatment with the ethanol extract and rhodomyrtone within 72 and 24 h, respectively. Cytotoxicity test of the extract and rhodomyrtone was performed on human normal fibroblast. The IC(50) values of the ethanol extract and rhodomyrtone were 476 and more than 200 μg/mL, approximately 15 and 400 folds higher than the MIC(90) values indicating that both substances were very low cytotoxic which could be applied as topical therapeutic anti-acne agents.  相似文献   

3.
One of the factors that contributes to the pathogenesis of acne is Propionibacterium acnes; yet, the molecular mechanism by which P. acnes induces inflammation is not known. Recent studies have demonstrated that microbial agents trigger cytokine responses via Toll-like receptors (TLRs). We investigated whether TLR2 mediates P. acnes-induced cytokine production in acne. Transfection of TLR2 into a nonresponsive cell line was sufficient for NF-kappa B activation in response to P. acnes. In addition, peritoneal macrophages from wild-type, TLR6 knockout, and TLR1 knockout mice, but not TLR2 knockout mice, produced IL-6 in response to P. acnes. P. acnes also induced activation of IL-12 p40 promoter activity via TLR2. Furthermore, P. acnes induced IL-12 and IL-8 protein production by primary human monocytes and this cytokine production was inhibited by anti-TLR2 blocking Ab. Finally, in acne lesions, TLR2 was expressed on the cell surface of macrophages surrounding pilosebaceous follicles. These data suggest that P. acnes triggers inflammatory cytokine responses in acne by activation of TLR2. As such, TLR2 may provide a novel target for treatment of this common skin disease.  相似文献   

4.
Acne is a common skin disorder of the pilosebaceous unit. In addition to genetic, hormonal and environmental factors, abnormal colonization by Propionibacterium acnes has been implicated in the occurrence of acne via the induction of inflammatory mediators. To gain more insight into the role that sebocytes play in the innate immune response of the skin, particularly in acne, we compared the antimicrobial peptide and proinflammatory cytokine/chemokine expression at mRNA and protein levels, as well as the viability and differentiation of SZ95 sebocytes in response to co-culture with representative isolates of P. acnes type IA and type IB as well as Escherichia coli-derived lipopolysaccharide (LPS). We found that, in vitro, P. acnes type IA and IB isolates and LPS induced human beta-defensin-2 and proinflammatory cytokine/chemokine expression, and influenced sebocyte viability and differentiation. Our results provide evidence that sebocytes are capable of producing proinflammatory cytokines/chemokines and antimicrobial peptides, which may have a role in acne pathogenesis. Furthermore, since P. acnes types IA and IB differentially affect both the differentiation and viability of sebocytes, our data demonstrate that different strains of P. acnes vary in their capacity to stimulate an inflammatory response within the pilosebaceous follicle.  相似文献   

5.
Propionibacterium acnes is a major etiological factor of acne, triggering an inflammatory response in part through the activation of TLR2. In this study, we demonstrate that activation of peripheral blood monocytes with P. acnes in vitro induced their differentiation into two distinct innate immune cell subsets, CD209(+) macrophages and CD1b(+) dendritic cells. Furthermore, P. acnes induced expression of mRNA for the cytokines IL-15 and GM-CSF, which differentiate CD209(+) and CD1b(+) cells, respectively. The CD209(+) cells were more effective in uptake of P. acnes, compared with the CD1b(+) cells, and demonstrated a 2-fold greater antimicrobial activity against the phagocytosed bacteria. Although CD1b(+) cells secreted inflammatory cytokines in response to both P. acnes and a TLR2 ligand control, the CD209(+) cells responded only to P. acnes. The addition of all-trans retinoic acid, a commonly used agent for the treatment of acne, directly induced differentiation of monocytes into CD209(+) macrophages and enhanced the P. acnes-mediated differentiation of the CD209(+) subset. Therefore, the differentiation of monocytes into CD209(+) macrophages and CD1b(+) dendritic cells distinctly mediate the innate immune response to P. acnes.  相似文献   

6.
Propionibacterium acnes, a usual inhabitant of human skin, plays an important role in acne development, related to the production of numerous enzymatic activities involved in the degradation of host molecules. Among these enzymes, P. acnes lipase (GehA, glycerol-ester hydrolase A) has been recognized as one of the major factors in the pathogenesis of acne, being responsible for the hydrolysis of sebum and the release of inflammatory compounds. Anti-acne treatments are based on the use of retinoids or benzoyl peroxide, frequently in combination with antibiotics. However, the low effectiveness of such treatments and the increasing antibiotic resistance has led to the development of alternative therapies such as Kampo formulations, containing traditional herbal drugs. Search for new anti-acne treatments led us to perform the cloning, characterization and inhibition of P. acnes GehA, considered an interesting pharmaceutical target for anti-acne therapies. The genetic, molecular and biochemical properties of the cloned lipase were analysed, and several inhibitor agents were tested, including natural substances like saponins, alkaloids or flavonoids. Among these, the flavonoids (±)-catechin and kaempferol were the most promising candidates for acne treatment, whereas saponins like glycyrrhicic acid and digitonin produced a lower inhibition of the enzyme. No inhibition by alkaloids was found. Therefore, the inhibition caused by (±)-catechin and kaempferol on GehA, together with their wide anti-acne properties and low toxicity, make them very suitable candidates for the treatment of acne and other P. acnes-related diseases.  相似文献   

7.
A major consequence of microbial infection is the tissue injury that results from the host inflammatory response. In acne, inflammation is due in part to the ability of Propionibacterium acnes to activate TLR2. Because all-trans retinoic acid (ATRA) decreases inflammation in acne, we investigated whether it regulates TLR2 expression and function. Treatment of primary human monocytes with ATRA led to the down-regulation of TLR2 as well as its coreceptor CD14, but not TLR1 or TLR4. The ability of a TLR2/1 ligand to trigger monocyte cytokine release was inhibited by pre- and cotreatment with ATRA; however, TLR4 activation was affected by cotreatment only. ATRA also down-regulated monocyte cytokine induction by P. acnes. These data indicate that ATRA exerts an anti-inflammatory effect on monocytes via two pathways, one specifically affecting TLR2/1 and CD14 expression and one independent of TLR expression. Agents that target TLR expression and function represent a novel strategy to treat inflammation in humans.  相似文献   

8.
Malignant melanoma (MM) is an aggressive cutaneous malignancy associated with poor prognosis; many putatively therapeutic agents have been administered, but with mostly unsuccessful results. Propionibacterium acnes (P. acnes) is an aerotolerant anaerobic gram-positive bacteria that causes acne and inflammation. After being engulfed and processed by phagocytes, P. acnes induces a strong Th1-type cytokine immune response by producing cytokines such as IL-12, IFN-γ and TNF-α. The characteristic Th2-mediated allergic response can be counteracted by Th1 cytokines induced by P. acnes injection. This inflammatory response induced by P. acnes has been suggested to have antitumor activity, but its effect on MM has not been fully evaluated.We analyzed the anti-tumor activity of P. acnes vaccination in a mouse model of MM. Intratumoral administration of P. acnes successfully protected the host against melanoma progression in vivo by inducing both cutaneous and systemic Th1 type cytokine expression, including TNF-α and IFN-γ, which are associated with subcutaneous granuloma formation. P. acnes-treated tumor lesions were infiltrated with TNF-α and IFN-γ positive T cells. In the spleen, TNF-α as well as IFN-γ producing CD8(+)T cells were increased, and interestingly, the number of monocytes was also increased following P. acnes administration. These observations suggest that P. acnes vaccination induces both systemic and local antitumor responses. In conclusion, this study shows that P. acnes vaccination may be a potent therapeutic alternative in MM.  相似文献   

9.
Cutaneous propionibacteria are important commensals of human skin and are implicated in a wide range of opportunistic infections. Propionibacterium acnes is also associated with inflammatory acne vulgaris. Bacteriophage PA6 is the first phage of P. acnes to be sequenced and demonstrates a high degree of similarity to many mycobacteriophages both morphologically and genetically. PA6 possesses an icosahedreal head and long noncontractile tail characteristic of the Siphoviridae. The overall genome organization of PA6 resembled that of the temperate mycobacteriophages, although the genome was much smaller, 29,739 bp (48 predicted genes), compared to, for example, 50,550 bp (86 predicted genes) for the Bxb1 genome. PA6 infected only P. acnes and produced clear plaques with turbid centers, but it lacked any obvious genes for lysogeny. The host range of PA6 was restricted to P. acnes, but the phage was able to infect and lyse all P. acnes isolates tested. Sequencing of the PA6 genome makes an important contribution to the study of phage evolution and propionibacterial genetics.  相似文献   

10.
Propionibacterium acnes is a component of physiological flora of human skin. It colonizes the outlets of sebaceous glands and participates in the pathogenesis of inflammatory acne. Acne vulgaris is a common skin disease. It is found in more or less exacerbated form in approximately 85% of adolescent population. The main purpose of the research was to confirm the hypothesis of Propionibacterium bacteria participation in the aetiopathogenesis of acne vulgaris. The researches have proved the presence of Propionibacterium acnes on the surface of the skin both of people with acne-related changes and these with whom such changes were not found. Statistically significant differences were found in the number of P. acnes bacteria per 1 square centimeter of healthy and disease-affected skin as well as in the diversity of biochemical types. The highest number of P. acnes bacteria have been found in fresh changes with visible symptoms of inflammation. In order to confirm the hypothesis of the participation of Propionibacterium bacteria in the aetiopathogenesis of acne, a detailed phenotypical analysis of isolated P. acnes strains have been conducted. Type, biotype, resistance pattern, proteolytic and lipolytic properties have been determined.  相似文献   

11.
Wang Y  Zhang Z  Chen L  Guang H  Li Z  Yang H  Li J  You D  Yu H  Lai R 《PloS one》2011,6(7):e22120
Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules in innate immunity. Cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and it is the first identified cathelicidin antimicrobial peptide in reptiles. In this study, cathelicidin-BF was found exerting strong antibacterial activities against Propionibacterium acnes. Its minimal inhibitory concentration against two strains of P. acnes was 4.7 μg/ml. Cathelicidin-BF also effectively killed other microorganisms including Staphylococcus epidermidis, which was possible pathogen for acne vulgaris. Cathelicidin-BF significantly inhibited pro-inflammatory factors secretion in human monocytic cells and P. acnes-induced O2.- production of human HaCaT keratinocyte cells. Observed by scanning electron microscopy, the surfaces of the treated pathogens underwent obvious morphological changes compared with the untreated controls, suggesting that this antimicrobial peptide exerts its action by disrupting membranes of microorganisms. The efficacy of cathelicidin-BF gel topical administering was evaluated in experimental mice skin colonization model. In vivo anti-inflammatory effects of cathelicidin-BF were confirmed by relieving P. acnes-induced mice ear swelling and granulomatous inflammation. The anti-inflammatory effects combined with potent antimicrobial activities and O2.- production inhibition activities of cathelicidin-BF indicate its potential as a novel therapeutic option for acne vulgaris.  相似文献   

12.
Propionibacterium acnes (P. acnes) plays an important role in the disease pathogenesis of acne vulgaris, a disorder of pilosebaceous follicles, seen primarily in the adolescent age group. In the present study, the presence of antibodies against P. acnes (MTCC1951) were detected in acne patient (n=50) and disease free controls (n=25) using dot-ELISA and Western blot assay. The ability of P. acnes to induce pro-inflammatory cytokines by human peripheral blood mononuclear cells (PBMCs), obtained from acne patients and healthy subjects, were also analysed. The patients (n=26) who were culture positive for skin swab culture, were found to have a more advanced disease and higher antibody titres (1:4000 to > 1:16000) compared to the P. acnes negative patients (n=24) and normal controls (n=25). An analysis of patients' sera by western blot assay recognized a number of antigenic components of P. acnes, ranging from 29 to 205 kDa. The major reactive component was an approximately 96 kDa polypeptide, which was recognised in 92% (24 of 26) of the patients sera. Further, the P. acnes culture supernatant, crude cell lysate and heat killed P. acnes whole cells, obtained from 72-h incubation culture, were observed to be able to induce significant amounts of IL-8 and tumor necrosis factor alpha (TNF-alpha) by the PBMCs in both the healthy subjects and patients, as analysed by cytokine-ELISA. The levels of cytokines were significantly higher in the patients than the healthy subjects. A major 96 kDa polypeptide reactant was eluted from the gel and was found to cause dose dependent stimulation of the productions of IL-8 and TNF-alpha. Thus, the above results suggest that both humoral and pro-inflammatory responses play major roles in the pathogenesis of acne.  相似文献   

13.
14.
This study was designed to analyze the chemical composition of Citrus obovoides (Geumgamja) and Citrus natsudaidai (Cheonyahagyul) oils and to test their biological activities. These citrus essential oils were obtained by steam distillation of fruits collected from Jeju Island, Korea, and were analyzed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Limonene and gamma-terpinene were the major components of the two citrus species. To evaluate in vitro anti-acne activity, they were tested against Propionibacterium acnes and Staphylococcus epidermidis, which are involved in acne. The Geumgamja and Cheonyahagyul oils exhibited antibacterial activity against both P. acnes and S. epidermidis. Their effects on DPPH radical scavenging, superoxide anion radical scavenging, and nitric oxide radical were also assessed. Cheonyahagyul and Geumgamja exhibited only superoxide anion radical-scavenging activity. To assess their potential usefulness in future cosmetic product applications, the cytotoxic effects of the two oils were determined by colorimetric MTT assays using two animal cell lines: normal human fibroblasts and HaCaT cells. They exhibited low cytotoxicity at 0.1 microl/ml in both cell lines. In addition, they reduced P. acnes-induced secretion of interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) in THP-1 cells, an indication of anti-inflammatory effects. Therefore, based on these results, we suggest that Geumgamja and Cheonyahagyul essential oils are attractive acne-mitigating candidates for topical application.  相似文献   

15.
The objective was to study the prevalence and antibiotic susceptibility patterns of Propionibacterium acnes strains isolated from patients with moderate to severe acne in Stockholm, Sweden and to determine the diversity of pulsed-field gel electrophoresis types among resistant P. acnes strains. One hundred antibiotic-treated patients and 30 non-antibiotic-treated patients with moderate to severe acne participated in the investigation. Facial, neck and trunk skin samples were taken with the agar gel technique. The susceptibility of P. acnes strains to tetracycline, erythromycin, clindamycin and trimethoprim-sulfamethoxazole was determined by the agar dilution method. The genomic profiles of the resistant strains were determined by pulsed-field gel electrophoresis. In the group of patients treated with antibiotics, resistant P. acnes strains were recovered in 37%, while in the non-antibiotic group of patients the incidence of resistant strains was 13%. Thus antibiotic-resistant P. acnes strains were significantly more often isolated from antibiotic-treated patients with moderate to severe acne than from non-antibiotic-treated patients (odds ratio, 3.8; P=0.01). There was a genetic diversity among the P. acnes strains. Forty-four different patterns of SpeI DNA digests were detected and two predominant clones were found. P. acnes strains exhibited different antibiotic susceptibility patterns and identical genotypes or vice versa. A person can be colonized with different strains with varying degrees of antibiotic resistance. The risk of increased resistance of P. acnes must be considered when treating acne patients with antibiotics, and especially long-term therapy should be avoided.  相似文献   

16.
Propionibacterium acnes is an anaerobic Gram-positive bacterium that forms part of the normal human cutaneous microbiota and is thought to play a central role in acne vulgaris, a chronic inflammatory disease of the pilosebaceous unit (I. Kurokawa et al., Exp. Dermatol. 18:821-832, 2009). Here we present the whole genome sequence of P. acnes type IB strain 6609, which was recovered from a skin sample from a woman with no recorded acne history and is thus considered a nonpathogenic strain (I. Nagy, Microbes Infect. 8:2195-2205, 2006).  相似文献   

17.
Propionibacterium acnes is a skin commensal that occasionally acts as an opportunistic pathogen. The population structure of this species shows three main lineages (I-III). While type I strains are mainly associated with sebaceous follicles of human skin and inflammatory acne, types II and III strains are more often associated with deep tissue infections. We investigated the occurrence and distribution of the clustered regularly interspaced short palindromic repeats (CRISPR) in P. acnes, assessed their immunological memory, and addressed the question if such a system could account for type-specific properties of the species. A collection of 108 clinical isolates covering all known phylotypes of P. acnes was screened for the existence of CRISPR/cas loci. We found that CRISPR loci are restricted to type II P. acnes strains. Sequence analyses of the CRISPR spacers revealed that the system confers immunity to P. acnes-specific phages and to two mobile genetic elements. These elements are found almost exclusively in type I P. acnes strains. Genome sequencing of a type I P. acnes isolate revealed that one element, 54 kb in size, encodes a putative secretion/tight adherence (TAD) system. Thus, CRISPR/cas loci in P. acnes recorded the exposure of type II strains to mobile genetic elements of type I strains. The CRISPR/cas locus is deleted in type I strains, which conceivably accounts for their ability to horizontally acquire fitness or virulence traits and might indicate that type I strains constitute a younger subpopulation of P. acnes.  相似文献   

18.
Propionibacterium acnes (formerly Corynebacterium parvum) is part of the human flora and, as such, is associated with several human pathologies. It possesses strong immunomodulatory activities, which makes this bacterium interesting for prophylactic and therapeutic vaccination. The bacterial component(s) and the host receptor(s) involved in the induction of these activities are poorly understood. We show in this study that TLR9 is crucial in generating the characteristic effects of killed P. acnes priming in the spleen, such as extramedullary hemopoiesis and organ enlargement, and granuloma formation in the liver. Furthermore, the ability to overproduce TNF-alpha and IFN-gamma in response to LPS, lipid A, synthetic lipopeptide Pam(3)CysK(4), or whole killed bacteria was present in P. acnes-primed wild-type, but not TLR9(-/-), mice. Finally, P. acnes priming failed to induce enhanced resistance to murine typhoid fever in TLR9(-/-) mice. Thus, TLR9 plays an essential role in the induction of immunomodulatory effects by P. acnes. Because IFN-gamma is a key mediator of these effects, and enhanced IFN-gamma mRNA expression was absent in spleen and liver of P. acnes-primed TLR9(-/-) mice, we conclude that TLR9 is required for the induction of IFN-gamma by P. acnes.  相似文献   

19.
20.
青少年痤疮面部皮肤微生物群落结构变化   总被引:3,自引:2,他引:1  
【背景】青少年痤疮是一种最常见的慢性炎症性损容性皮肤病,与痤疮丙酸杆菌的异常增殖有关。【目的】探究痤疮皮损区与附近无明显皮损区微生物组成与健康对照的差异,为从微生态角度防治痤疮提供理论基础。【方法】利用细菌16S rRNA基因V1-V2区和真菌TIS1高通量测序技术分析北京地区16岁青少年面部痤疮皮肤细菌和真菌群落结构,将痤疮皮损区与附近无明显皮损区微生物组成与健康组进行比较,寻找差异菌群。【结果】痤疮患者面部皮损区与附近无明显皮损区细菌多样性(Shannon指数)较健康对照组显著性降低(P0.001),主要与丙酸杆菌(痤疮丙酸杆菌)和葡萄球菌(表皮葡萄球菌PM221)显著性上升相关,而痤疮皮损区与附近未明显皮损区细菌组成无显著性差异。痤疮患者皮损区与附近无明显皮损区较健康对照组真菌丰富度(Chao1指数)显著性上升(P0.05),与限制性马拉色菌的显著上升相关。【结论】面部皮肤微生物变化与青少年痤疮的发生相关。本研究为从微生物角度防治痤疮提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号