首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of free lanthanide ions and their complexes for plasmid DNA pBR322 and chromosomal DNA cleavage was studied. Plasmid pBR322 DNA was treated by lanthanide chlorides (Eu(3+), La(3+), Nd(3+), Pr(3+), Gd(3+)) in HEPES buffer (pH 7.0, 7.5 and 8.0) at 24, 37, 50, 63, and 76 degrees C. The formation of linear and nicked plasmid forms was investigated depending on the reaction conditions. Heterogeneous lanthanide complexes of ethylenediamine tetraacetic acid (EDTA) immobilized on insoluble methacrylate support and iminodiacetic acid (IDA) immobilized on styrene support were used as catalysts plasmid for DNA pBR322 cleavage, too. The temperature of reaction mixture had substantial influence on cleavage rate. The precipitation of DNA occurred during the measurement of interactions between chromosomal DNA and La(3+) ions.  相似文献   

2.
Cellular accumulation of 5-aminolevulinic acid (ALA), the first specific intermediate of heme biosynthesis, is correlated in liver biopsy samples of acute intermittent porphyria affected patients with an increase in the occurrence of hepatic cancers and the formation of ferritin deposits in hepatocytes. 5-Aminolevulinic acid is able to undergo enolization and to be subsequently oxidized in a reaction catalyzed by iron complexes yielding 4,5-dioxovaleric acid (DOVA). The released superoxide radical (O(*-)(2)) is involved in the formation of reactive hydroxyl radical ((*)OH) or related species arising from a Fenton-type reaction mediated by Fe(II) and Cu(I). This leads to DNA oxidation. The metal catalyzed oxidation of ALA may be exalted by the O(*-)(2) and enoyl radical-mediated release of Fe(II) ions from ferritin. We report here the potentiating effect of ferritin on the ALA-mediated cleavage of plasmid DNA and the enhancement of the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodGuo). Plasmid pBR322 was incubated with ALA and varying amounts of purified ferritin. DNA damage was assessed by gel electrophoresis analysis of the open and the linear forms of the plasmid from the native supercoiled structure. Addition of either the DNA compacting polyamine spermidine or the metal chelator ethylenediaminetetraacetic acid (EDTA) inhibited the damage. It was also shown that ALA in the presence of ferritin is able to increase the oxidation of the guanine moiety of monomeric 2'-deoxyguanosine (dGuo) and calf thymus DNA (CTDNA) to form 8-oxodGuo as inferred from high performance liquid chromatography (HPLC) measurements using electrochemical detection. The formation of the adduct dGuo-DOVA was detected in CTDNA upon incubation with ALA and ferritin. In a subsequent investigation, the aldehyde DOVA was also able to induces strand breaks in pBR322 DNA.  相似文献   

3.
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.  相似文献   

4.
An unusual structural component, supercondensed pBR322 DNA, has been found in plasmid pBR322 DNA samples isolated from a DNA topoisomerase II mutant of Escherichia coli, SD108 (topA+, gyrB225). The supercondensed pBR322 DNA moved faster than supercoiled pBR322 DNA as a homogeneous band in agrose gels when the DNA samples were analysed by electrophoresis. The mobility of the supercondensed DNA was not substantially affected by chloroquine intercalation. The supercondensed pBR322 DNA migrated as a high density "third DNA band" when the samples were subjected to caesium chloride/ethidium bromide gradient equilibrium centrifugation. The unusual pBR322 DNA visualized by electron microscopy was a globoid-shaped particle. These observations suggest that the pBR322 plasmid can assume a tertiary structure other than a supercoiled or relaxed structure. DNA topoisomerases may be involved in the supercondensation of plasmid DNA and chromosomal DNA.  相似文献   

5.
A new metal complex, Fe(Sal2dienNO3·H2O) (where Sal is salicylaldehyde and dien is diethylenetriamine), has been synthesized and characterized. The interactions between the Fe(III) complex and calf thymus DNA has been investigated using UV and fluorescence spectra, viscosity, thermal denaturation, and molecular modeling. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. The experimental results show that the mode of binding of the complex to DNA is classical intercalation and the complex can cleave pBR322 DNA.  相似文献   

6.
During the ESR spectroscopic titration of nitrosyl-iron bleomycin, ON---Fe(II)Blm, with DNA, its metal domain undergoes a change in environment as the DNA base pair to drug ratio increases to 50 to 1. The 15N---O stretching frequency of ON---Fe(II)Blm occurs at 1589 cm−1, similar to that for nitrosyl hemoglobin and myoglobin. Upon addition of DNA (3 base pairs per drug molecule), this vibration is substantially broadened. Injection of O2 into a solution of ON---Fe(II)BlmDNA converts the ESR signal of the nitrosyl species to low spin Fe(III) BlmDNA. NO is largely oxidized to NO2. The combination of these products suggests that the initial reaction of ON---Fe(II)Blm with O2 generates Fe(III)Blm and peroxynitrite, O2NO. If peroxynitrite is formed in the reaction, it does not cause detectable DNA damage. The structural integrity of a supercoiled DNA plasmid, pBR322, is not compromised and no base propenals are produced during this reaction.  相似文献   

7.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(phen)(2)(dpta)](3+) and [Co(phen)(2)(amtp)](3+) (phen=1,10-phenanthroline, dpta=dipyrido-[3,2-a;2',3'-c]- thien-[3,4-c]azine, amtp=3-amino-1,2,4-triazino[5,6-f]1,10-phenanthroline) have been synthesized and characterized. The interaction of these complexes with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, these Co(III) complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365nm. The mechanism studies reveal that hydroxyl radical (OH()) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(phen)(2)(dpta)](3+) and superoxide anion radical (O(2)(-)) acts as the key role in the cleavage reaction of plasmid DNA by [Co(phen)(2)(amtp)](3+).  相似文献   

8.
DNA hydrolysis by rare-earth metal ions.   总被引:2,自引:0,他引:2  
Plasmid DNA and poly(dA) are cleaved by rare-earth(III) ions at pH 7-8 and 50 degrees C. The cleavage has been confirmed by prompt conversion of supercoiled pBR 322 plasmid DNA (Form I) to a relaxed Form II. Furthermore, degradation of poly(dA) to shorter oligonucleotides is clearly evidenced by HPLC. A possible application of the metal ions (and their complexes) to artificial nucleases is indicated.  相似文献   

9.
The Pd(II) complexes, [PdCl(2)(1,2-pn)] and [PdCl(2)(1,3-pn)] (pn is diaminopropane), were synthesized and characterized by analytical and spectroscopic (FT-IR, (1)H NMR and (13)C NMR) techniques. UV difference spectral study performed on Pd-pn/DNA systems, indicate a pronounced interaction of palladium complexes with DNA in cell-free media; comparison of lambda(max), Abs(max) and %H values observed for the two compounds might be attributed to structural differences of the chelated ligand rings. Results obtained from electrophoretic analysis of Pd complexes in presence of pBR322 plasmid DNA show a clear decreasing of the supercoiled (SC) DNA form mobility, that could be attributed to unwinding of the double helix; a parallel increasing of the open-circular (OC) DNA form mobility is also noted, this fact implying that the binding of complexes either shortens or condenses the DNA helix. Interaction studies of Pd complexes with plasmid DNA in different buffer systems indicate that DNA binding efficiency capable of modifying the tertiary structure of pBR322 decreased from NaClO(4) to Hepes 2, Hepes 1 [Hepes=4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid], and Tris [(hydroxymethyl)aminomethane] buffers, in this order. Moreover, the level of DNA modifications produced by palladium complexes in 10 mM NaClO(4) remains unchanged after transferring the samples into the medium required for subsequent biophysical or biochemical analyses.  相似文献   

10.
Inspired by the structures of natural nucleases, guanidinium groups were introduced into binuclear iron(III) systems. Compared with the corresponding analogue without guanidinium groups, the new diiron(III) system led to considerable rate enhancement on DNA cleavage. The cooperativity between metal ions and guanidine groups was evidenced by the fact that no significant cleavage was observed after incubating pBR322 plasmid DNA with non-metalated ligands or free Fe3+ ion. DNA binding experiments indicated that introduction of positively charged guanidinium groups can obtain more than one order of magnitude enhancement in the affinity of complex with DNA.  相似文献   

11.
Ferrous ion-induced generation of single and multiple strand breaks in the DNA plasmid pBR322 induces the formation of two new plasmid forms with altered electrophoretic mobility. The yield of these plasmid forms, the circular relaxed and the linear forms, depended on the applied Fe2+ concentration. This property was independent of the presence of hydrogen peroxide in the incubation mixture indicating the lack of Fenton chemistry to explain the DNA degradation. The removal of dioxygen or the presence of superoxide dismutase diminished partially the yield of ferrous ion-induced DNA plasmid degradation, while catalase was without any effect. Autoxidation of divalent iron as followed by the formation of a coloured iron-phenanthroline complex was enhanced in a concentration-dependent manner by phosphate and bicarbonate and very efficiently using a mixture of 0.15 M NaCl, 1.2 mM phosphate, 23.8 mM bicarbonate, pH 7.4, that concentrations correspond closely to the intracellular values of buffer components. Thus, the formation of a yet unknown reactive species from Fe2+, and dioxygen, that is complexed to buffer components especially phosphate and its contribution in DNA plasmid degradation is more likely than the often cited formation of hydroxyl radicals in result of the Fenton reaction from Fe2+ and hydrogen peroxide. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

12.
Gossypol, a polyphenolic binaphthyl dialdehyde found in cotton seeds, is a dietary mutagen and a potential male contraceptive. In the presence of Cu(II), gossypol caused breakage of supercoiled plasmid pBR322 DNA. The products were relaxed circles or a mixture of these and linear molecules. Other metal ions tested [Ni(II), Co(II), Mn(II), and Fe(II)] were ineffective or less effective in the DNA breakage reaction. In the case of gossypol-Cu(II) mediated cleavage, (Cu(I) was shown to be an essential intermediate by using the Cud) sequestering reagent bathocuproine. By using job plots, it was established that in the absence of DNA, eight Cu(II) ions can be reduced by one gossypol molecule. The involvement of active oxygen species, such as singlet oxygen and H2O2, was established by the inhibition of DNA breakage by catalase and by sodium azide. It was further shown that gossypol is capable of directly producing H2O2.  相似文献   

13.
The new potential antitumour soluble drug K[Ru(eddp)Cl(2)].3H(2)O, (eddp=ethylenediamine-N,N'-di-3-propionate) has been isolated and characterized. The analysis of the interaction of this complex with pBR322 plasmid DNA by circular dichroism spectroscopy shows that the ruthenium complex initially induces alteration of both CD positive and negative features resembling those previously observed for monofunctional platinum complexes. Further addition of drug at r(i) higher than 0.50 suggests appreciable conformational alterations of typical secondary structure of B-type DNA, implying loss of DNA helicity and unwinding of the double helix. The results reported herein about the binding of K[Ru(eddp)Cl(2)] to the named plasmid performed by electrophoresis indicate that the Ru(III) center preferentially forms initial monofunctional adducts with this plasmid. In addition, the DNA binding data suggest that the plasmid is cleaved by K[Ru(eddp)Cl(2)] in the presence of physiological concentrations of ascorbate. These results support the hypothesis that reactive Ru(II) species may be formed from Ru(III) upon incubation with a reductant agent such as ascorbate. The testing of the cytotoxic activity of this complex against several human cancer cell lines evidenced that K[Ru(eddp)Cl(2)] complex had a remarkable and selective antiproliferative effect against the cervix carcinoma HeLa and colon adenocarcinoma HT-29, behaving in these two cases as an antineoplastic drug.  相似文献   

14.
Mimosine, DNA breaKs, Free Radicals, Fenton Reaction Supercoiled plasmid DNA was treated in vitro with H2O2, DTT and either Fe (II), Fe (II)-EDTA or Fe (II)-mimosine. The rate of DNA break formation was followed by the conversion of the supercoiled form into relaxed-circular and linear forms. In the concentration interval of 0-4 microM Fe (II), Fe (II)-EDTA slowed-down the formation of DNA breaks, while Fe (II)-mimosine enhanced the rate of break formation up to several times. A conclusion is drawn that this enhancement is due to the increased affinity of the Fe (II)-mimosine complex to DNA.  相似文献   

15.
16.
A method is suggested for chemical modification of preselected regions of plasmid DNA by complementary single-stranded restriction fragments of DNA (srf DNA), carrying alkylating reagents. The gene coding for tetracycline resistance of plasmid pBR322 was used as a target. Srf DNA was prepared by a partial digestion of a double-stranded EcoRI-BamHI restriction fragment (377 base pairs) from Tcr by E. coli exonuclease III. The residues of an alkylating reagent N,N,N'-tri(beta-chlorethyl)-N'-(p-formylphenyl) propylenediamine 1,3 (TFP) were attached covalently to 4-5% of sfr DNA bases. The alkylating derivative of the sfr DNA was hybridized with supercoiled pBR322 plasmid DNA. The hybridization conditions (37 degrees C, 40% formamide, 0,2 M NaCl, 0,1 M Tris-HCl pH 7,5, 0,001 M EDTA) under which the bases carrying TFP residues are not eliminated from the sfr DNA, and transforming activity of pBR322 DNA does not decrease were established. It was shown that about 20% of plasmid pBR322 molecules form D-loops with alkylating sfr DNA under these conditions. It was shown that sfr DNA, carrying TFP can alkylate the complementary region of plasmid DNA, forming cross-linked D-loops. A method for the site-directed mutagenesis of switching off the preselected genes or non-transcribed DNA functional regions (promotors, introns etc) integrated into plasmids of other vectors is suggested.  相似文献   

17.
Three novel asymmetric ligands, 3-(pyridine-2-yl)-5,6-diphenyl-as-triazine (pdtb), 3-(pyridine-2-yl)-as-triazino[5,6-f]acenaphthylene (pdta) and 3-(pyridine-2-yl)-as-triazino[5,6-f]phenanthroline (pdtp) and their cobalt(III) complexes have been synthesized and characterized. Binding of the three complexes with calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods, viscosity, cyclic voltammetry, and electrophoresis measurements. The experimental results indicate that the size and shape of the intercalated ligand have a marked effect on the binding affinity of complexes to CT-DNA. Complexes 2 and 3 have also been found to promote cleavage of plasmid pBR322 DNA from the supercoiled form I to the open circular form II upon irradiation.  相似文献   

18.
After enrichment by a tetracycline suicide under conditions nonpermissive for the growth of mutants defective in photosynthesis, colonies were screened for enhanced fluorescence in near-infrared light by using high-speed infrared photography. Twenty mutants were isolated, and the chromatophore membranes were analyzed by a new, rapid microprocedure that revealed many different phenotypes among the mutants. The enhanced fluorescence mutants typically possessed a functional light-harvesting II antenna, but showed reduced or absent light-harvesting I. Twelve isolates were also defective in reaction center polypeptides. An R-prime plasmid that bears 50 kilobases of Rhodopseudomonas capsulata DNA coding for components of the photosynthetic apparatus (B. L. Marrs, J. Bacteriol. 146:1003-1012, 1981), pRPS404, complemented all 20 enhanced fluorescence mutants as demonstrated by the quenching of fluorescence in mutants that had received the R-prime plasmid by conjugation. Fluorescence was regained upon loss of the 50-kilobase insert. Complementation of the fluorescent lesions implies that most or all of the genes necessary for the expression of the reaction center and the light-harvesting antennae are carried by the R-prime plasmid and that these genes are actively transcribed in the homologous organism. All 20 mutants are complemented by one of two pBR322 subclones of the R-prime plasmid, pRPSEB2 or pRPSE2. pRPSEB2 bears a 4.5-kilobase fragment of R. capsulata DNA including the rxcA locus, and pRPSE2 is a pBR322 derivative bearing a 7.5-kilobase R. capsulata DNA fragment bearing the rxcB locus. These fragments therefore carry sequences necessary for the normal synthesis of the light-harvesting and reaction center polypeptide complexes.  相似文献   

19.
Lu YH  Wei BL  Ko HH  Lin CN 《Phytochemistry》2008,69(1):225-233
Five 2,4,6-prenylated phloroglucinols, garcinielliptones HA (1), HB (2), HC (3), HD (4) and HE (5), were isolated from the heartwood of Garcinia subelliptica Merr. Their structures, including relative configurations, were elucidated by means of spectroscopic data analysis. The ability of phloroglucinols, 1-5 and lignans, tuberculatin (8), justicidin A (9), procumbenoside A (10) and ciliatosides A (11) and B (12), isolated from Justicia ciliata and Justicia procumbens, to induce DNA-cleavage activity was examined using pBR322, a supercoiled, covalently closed circular DNA, and it was analyzed by agarose gel electrophoresis. In the presence of Cu (II), compounds 3, 8, 10 and 11 caused significant breakage of supercoiled plasmid pBR322. The products were relaxed circles with no detectable linear forms. In the Cu(II)-mediated DNA damage of 3 and selective compound 8, Cu(I) was shown not to be an essential intermediate by using the Cu(I)-specific sequestering reagent neocuproine.  相似文献   

20.
The reduction of dioxygen by cellobiose oxidase leads to accumulation of H2O2, with either cellobiose or microcrystalline cellulose as electron donor. Cellobiose oxidase will also reduce many Fe(III) complexes, including Fe(III) acetate. Many Fe(II) complexes react with H2O2 to produce hydroxyl radicals or a similarly reactive species in the Fenton reaction as shown: H2O2 + Fe2+----HO. + HO- + Fe3+. The hydroxylation of salicylic acid to 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid is a standard test for hydroxyl radicals. Hydroxylation was observed in acetate buffer (pH 4.0), both with Fe(II) plus H2O2 and with cellobiose oxidase plus cellobiose, O2 and Fe(III). The hydroxylation was suppressed by addition of catalase or the absence of iron [Fe(II) or Fe(III) as appropriate]. Another test for hydroxyl radicals is the conversion of deoxyribose to malondialdehyde; this gave positive results under similar conditions. Further experiments used an O2 electrode. Addition of H2O2 to Fe(II) acetate (pH 4.0) or Fe(II) phosphate (pH 2.8) in the absence of enzyme led to a pulse of O2 uptake, as expected from production of hydroxyl radicals as shown: RH+HO.----R. + H2O; R. + O2----RO2.----products. With phosphate (pH 2.8) or 10 mM acetate (pH 4.0), the O2 uptake pulse was increased by Avicel, suggesting that the Avicel was being damaged. Oxygen uptake was monitored for mixtures of Avicel (5 g.1-1), cellobiose oxidase, O2 and Fe(III) (30 microM). An addition of catalase after 20-30 min indicated very little accumulation of H2O2, but caused a 70% inhibition of the O2 uptake rate. This was observed with either phosphate (pH 2.8) or 10 mM acetate (pH 4.0) as buffer, and is further evidence that oxidative damage had been taking place, until the Fenton reaction was suppressed by catalase. A separate binding study established that with 10 mM acetate as buffer, almost all (98%) of the Fe(III) would have been bound to the Avicel. In the presence of Fe(III), cellobiose oxidase could provide a biological method for disrupting the crystalline structure of cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号