首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
The dihydropyridine receptor purified from rabbit skeletal muscle yields in the presence of dithiothreitol and sodium dodecyl sulfate on polyacrylamide gels bands of apparent molecular mass 165 +/- 5, 130 +/- 5, 55 +/- 3, 32 +/- 2 and 28 +/- 1 kDa (chi +/- SEM, n = 12). Under nonreducing conditions, the 130 kDa and 28-kDa peptides migrate as a single peptide of 165 kDa. These peptides were separated on a HPLC size-exclusion column. The specific absorption coefficients of the isolated peptides were determined. From these a stoichiometry of 1:1.7 +/- 0.2:1.4 +/- 0.3 (chi +/- SEM of 12 experiments with three different preparations) was calculated for the 165-kDa, 55-kDa and 32-kDa peptides. The relative amount of the 130/28-kDa peptide varied with different preparations. Tryptic, chymotryptic and V-8 protease peptides of the isolated proteins suggested that the 130/28-kDa peptide was not related to the 165-kDa peptide. The dihydropyridine photoaffinity analog (+/-)-azidopine was specifically incorporated only into the 165-kDa peptide with an efficiency of about 2.4%. The azido analog of desmethoxyverapamil, LU 49888, was specifically incorporated into the same peptide with an efficiency of 1.5%. These results suggest that only the 165-kDa peptide contains the regulatory sites detected so far in the voltage-operated L-type calcium channel. They suggest further that the 130/28-kDa peptide, which migrates as a 165-kDa peptide under nonreducing conditions, does not contain high-affinity binding sites for the calcium channel blockers.  相似文献   

2.
We have purified putative L-type Ca2+ channels from chick heart by virtue of their associated high affinity receptors for the Ca2+ channel effectors, dihydropyridines (DHPs), and phenylalkylamines (PAAs). A peptide of 185,000-190,000 daltons was found to comigrate with the peak of DHP binding activity during purification through two successive cycles of lectin affinity chromatography and sucrose density gradient centrifugation. A previously described peptide of 140,000 daltons, whose Mr was increased to approximately 180,000 under nonreducing conditions, also copurified with the 185-kDa peptide and dihydropyridine binding activity. When cardiac membranes were photolabeled with either the dihydropyridine [3H]azidopine or the PAA [3H]azidopamil prior to purification, a single, specifically labeled component of 185,000-190,000 daltons was present in the purified fractions. The properties of this 185-kDa cardiac DHP/PAA receptor were compared to the smaller 165-kDa DHP/PAA receptor previously purified from skeletal muscle. Antibodies raised against the 165-kDa skeletal muscle DHP/PAA receptor reacted with both rabbit and chick skeletal muscle receptors, but only poorly recognized, if at all, the cardiac 185-190 kDa component. The 185-kDa peptide present in the purified fractions obtained from cardiac muscle did not undergo substantial phosphorylation by cAMP-dependent protein kinase, while the purified 165-kDa peptide from rabbit and chick skeletal muscle was a good substrate for this kinase. The results show that the DHP and PAA receptors in cardiac muscle are contained in a 185-190-kDa peptide that is significantly larger than, and structurally and immunologically different from, it skeletal muscle counterpart.  相似文献   

3.
The dihydropyridine receptor purified from rabbit skeletal muscle contains three proteins of 165, 55 and 32 kDa. cAMP kinase and protein kinase C phosphorylate the 165-kDa and the 55-kDa proteins. At identical concentrations of each protein kinase, cAMP kinase phosphorylates the 165-kDa protein faster than the 55-kDa protein. Protein kinase C phosphorylates preferentially the 55-kDa protein. cAMP kinase incorporates up to 1.6 mol phosphate/mol protein into the 165-kDa protein and 1 mol/mol into the 55-kDa protein upon prolonged incubation. At a physiological concentration of cAMP kinase 1 mol phosphate is incorporated/mol 165-kDa protein within 10 min, suggesting a physiological role of this phosphorylation. Protein kinase C incorporates up to 1 mol phosphate/mol into the 55-kDa protein and less than 1 mol/mol into the 165-kDa protein. Tryptic phosphopeptide analysis reveals that cAMP kinase phosphorylates two distinct peptides in the 165-kDa protein, whereas protein kinase C phosphorylates a single peptide in the 165-kDa protein. cAMP kinase and protein kinase C phosphorylate three and two peptides in the 55-kDa protein, respectively. Mixtures of the tryptic phosphopeptides derived from the 165-kDa and 55-kDa proteins elute according to the composite of the two elution profiles. These results suggest that the 165-kDa protein, which contains the binding sites for each class of calcium channel blockers and the basic calcium-conducting structure, is a specific substrate for cAMP kinase. The 55-kDa protein apparently contains sites preferentially phosphorylated by protein kinase C.  相似文献   

4.
Previous photoaffinity-labeling studies with [3H]azidopine, (+) [3H]PN200-110, and [3H]LU 49888 have demonstrated that 1,4-dihydropyridines (nifedipine-like drugs) and phenylalkylamines (verapamil-like drugs) bind exclusively to the 165-kDa alpha 1 subunit of skeletal muscle calcium channels. However, it has not been conclusively determined whether benzothiazepines (diltiazem-like drugs), which represent the third group of calcium antagonists, also bind to the alpha 1 subunit. Here we report data obtained with a newly developed benzothiazepine photoaffinity probe, [3H]azidobutyryl diltiazem. This drug competes with diltiazem for the benzothiazepine-binding site and, in purified calcium channel preparations, specifically labels the 165-kDa polypeptide which does not change its electrophoretic mobility upon disulfide reduction. These data show that benzothiazepines, just like 1,4-dihydropyridines and phenylalkylamines, bind to the alpha 1 subunit of the skeletal muscle calcium channels.  相似文献   

5.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

6.
Rat brain proteins presenting high-affinity binding of S-adenosyl-L-homocysteine were solubilized and purified. Extraction of binding protein was carried out in the presence of Triton X-100 and 1 M NaCl; this solubilized fraction exhibits similar kinetic properties than the membrane proteins. Purification was performed using affinity chromatography on S-adenosyl-L-homocysteine carboxyhexyl Sepharose 48 conjugate. The analysis of the affinity gel eluate by SDS-PAGE showed high purification ratios for two proteins exhibiting 54 and 68 kDa. Three activity peaks were separated when solubilized membrane proteins were submitted to isoelectric focusing; the activity peaks corresponded to proteins of pH, 6.0, 6.5, and 7.2. SDS-PAGE separation of proteins contained in each peak showed protein aggregation; a 54-kDa subunit was present in each aggregate. Solubilized membrane proteins were labeled by photoaffinity labeling with tritiated S-adenosyl-L-homocysteine; the 54-and 68-kDa proteins were found among the specifically labeled proteins. Finally, according to the previous data from the literature, the purified S-adenosyl-L-homocysteine binding proteins do not seem to be the same as adenosine receptors or phosphatidylethanolamine-N-methyltransferase.  相似文献   

7.
Photoaffinity labeling of alpha 1-adrenergic receptors of rat heart   总被引:1,自引:0,他引:1  
The photoaffinity probe [125I]aryl azidoprazosin was used to examine structural aspects of rat left ventricular alpha 1-adrenergic receptor. Autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins from photoaffinity-labeled membranes revealed a specifically labeled protein of mass 77 kDa. Adrenergic drugs competed with the photoaffinity probe for binding to the receptor in a manner expected of an alpha 1-adrenergic antagonist. Because the autoradiographic pattern was unaltered by incubating labeled membranes in gel sample buffer containing high concentrations of reducing agents, the binding component of the cardiac alpha 1-adrenergic receptor appears to be a single polypeptide chain. The photoaffinity probe specifically labeled a single protein of approximately 68 kDa in membranes of cardiac myocytes prepared from rat left ventricles. The role played by sulfhydryls in receptor structure and function was also studied. Dithiothreitol (DTT) inhibited [3H]prazosin binding to left ventricular membranes and altered both the equilibrium dissociation constant and maximal number of [3H]prazosin-binding sites but not the ability of the guanine nucleotide guanyl-5'-yl imidodiphosphate to decrease agonist affinity for the receptors. When photoaffinity-labeled membranes were incubated with 40 mM DTT for 30 min at room temperature, two specifically labeled proteins of 77 and 68 kDa were identified. The DTT-induced conversion of the 77-kDa protein to 68 kDa was irreversible with washing, but the effect of DTT on [3H]prazosin binding was reversible. Both 77- and 68-kDa proteins were observed with liver membranes even in the absence of reducing agent. We suggest that the DTT-induced conversion of the 77-kDa protein to 68 kDa is due to enhancement in protease activity by the reductant. These results document that the cardiac alpha 1-adrenergic receptor is a 77-kDa protein, similar in mass to the receptor in liver and other sites. Proteolysis likely accounts for lower Mr forms of this receptor found in cardiac myocytes and in previous publications on hepatic alpha 1-receptors.  相似文献   

8.
The cardiac receptor for calcium channel blockers was purified from bovine microsomal membranes which contained 235 +/- 33 fmol nimodipine-binding sites/mg protein (mean +/- SEM of nine preparations). To identify the receptor during the purification 20% of its binding sites were prelabeled with (+)[3H]PN200-110. The receptor was solubilized with 0.6% digitonin and was purified to a specific density of 157 pmol/mg using a combination of ion-exchange, wheat-germ-agglutinin-Sepharose chromatography and sucrose density gradient centrifugation. In the last sucrose gradient bound (+)[3H]PN200-110 comigrated with a 195-kDa protein. ( +/-)[3H]Azidopine and [3H]ludopamil, the photoaffinity ligands for the dihydropyridine and phenylalkylamine-binding site of the calcium channel, were incorporated specifically into the 195-kDa protein. These data indicate that the bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Its molecular mass suggests that the bovine cardiac receptor differs considerably from the rabbit skeletal muscle receptor protein for calcium channel blockers.  相似文献   

9.
10.
A 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide has been identified by photoaffinity labeling of purified rabbit and guinea pig skeletal muscle calcium channel preparations. The arylazide ligands (-)-[3H]azidopine and (-)-5-[(3-azidophenethyl)[N-methyl-3H]methylamino]-2-(3,4,5- trimethoxyphenyl)-2-isopropylvaleronitrile [( N-methyl-3H]LU 49888) were used to label 1,4-dihydropyridine- and phenylalkylamine-binding sites, respectively. A single, 155 to 170-kDa polypeptide was specifically labeled by both ligands in rabbit and guinea pig preparations provided that the skeletal muscle membranes used for purification were derived from fresh and not previously frozen and thawed tissue. The photoaffinity labeled polypeptide (termed here alpha 1) is different from the previously described alpha subunit in that it has the identical electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels irrespective of pretreatment either with N-ethylmaleimide or with dithiothreitol. The use of transverse tubular membranes isolated from previously frozen and thawed skeletal muscle results in a purified calcium channel preparation devoid of the alpha 1 subunit. In these preparations proteolytic degradation products of alpha 1 are labeled with both (-)-[3H]azidopine and [N-methyl-3H]LU 49888. Another large molecular weight polypeptide (termed here alpha 2) was also present in every purified calcium channel preparation studied. alpha 2 is distinct from alpha 1 in that reduction with dithiothreitol changes its apparent mass from 160-190 to 130-150 kDa. The alpha 2 subunit is not photoaffinity labeled either with (-)-[3H]azidopine or [N-methyl-3H]LU 49888. These data suggest that two distinct high molecular weight polypeptides (termed alpha 1 and alpha 2) are putative subunits of skeletal muscle calcium channels. Only the alpha 1 subunit contains both 1,4-dihydropyridine and phenylalkylamine receptors. alpha 2 is the same as the previously described alpha subunit (Curtis, B. M., and Catterall, W. A. (1984) Biochemistry 23, 2113-2118), but is neither a 1,4-dihydropyridine- nor a phenylalkylamine-binding protein.  相似文献   

11.
A novel family of cyclosporin A (CsA) binding proteins was identified by using the biologically active, radioiodinated photoaffinity probe [D-Lys-N epsilon-(4-azido-3-[125I]iodophenyl)propionyl)]8-CsA. In addition to cyclophilin, proteins with molecular masses of 43 kDa and approximately 50-55 kDa were labeled in Jurkat extracts and bovine calf thymus. Sequence analysis of the 43-kDa protein purified from calf thymus and subsequent Western analysis of CsA affinity-purified material from Jurkat extracts identified the 43-kDa component as actin. [D-Lys-N epsilon-(5-dimethylamino-1-naphthalenesulfonyl)]8-CsA, a fluorescent analogue of CsA, was prepared and used to measure the binding constants of cyclosporin derivatives to actin by means of a new fluorescence displacement assay. [D-Lys-N epsilon-(5-dimethylamino-1-naphthalenesulfonyl)]8-CsA and [N delta-t-butoxycarbonyl diaminobutyryl)]8-CsA bind to bovine actin at physiologically relevant concentrations, with dissociation constants of 60 +/- 33 and 570 +/- 380 nM, respectively. Because the ATPase fragment of heat shock cognate 70 (HSC 70) is structurally related to actin, the yeast homologue SSA1 was tested and found to be radiolabeled by the cyclosporin A photoaffinity reagent. The binding constant for [D-Lys-N epsilon-(5-dimethylamino-1-naphthalenesulfonyl)]8-CsA to SSA1 was determined and is 53 +/- 48 nM. These results indicate that actin and the 70-kDa heat shock protein family contain a structurally related domain for binding of cyclosporin A-related peptides.  相似文献   

12.
《The Journal of cell biology》1989,109(6):2783-2790
Isolated purified plasma membrane domains from unstimulated human neutrophils were photoaffinity labeled with F-Met-Leu-Phe-N epsilon-(2- (p-azido-[125I]salicylamido)ethyl- 1,3'-dithiopropionyl)-Lys also referred to as FMLPL-SASD[125I]. Most of the photoaffinity-labeled N- formyl peptide receptors were found in light plasma membrane fraction (PM-L) which has been previously shown to be enriched in guanyl nucleotide binding proteins and the plasma membrane marker alkaline phosphatase (Jesaitis, A. J., G. M. Bokoch, J. O. Tolley, and R. A. Allen. 1988. J. Cell Biol. 107:921-928). Furthermore, the heavy plasma membrane fraction (PM-H), which is enriched in actin and fodrin, was depleted in receptors. Solubilization of PM-L and PM-H in divalent cation-free buffer containing octylglucoside and subsequent sedimentation at 180,000 g in detergent-containing sucrose gradients revealed two receptor forms. The major population, found in PM-L sedimented as a globular protein with an apparent sedimentation coefficient of 6-7S, while a minor fraction found in the PM-H fraction sedimented as a 4S particle. In addition, the 6-7S form could be converted to the 4S form by inclusion of guanosine 5'-O-(3- thiotriphosphate) (GTP gamma S) in the extraction buffer (ED50 = 10-30 nM). ATP was not effective at doses of up to 10 microM. In contrast, isolation and solubilization of receptors from desensitized cells (photoaffinity labeled after a 15 degrees C incubation with FMLPL- SASD[125I]) revealed that the majority of receptors (greater than 60- 90%), which are found in PM-H, sedimented as 4S particles. A minor fraction of receptors found in the PM-L sedimented as 6-7S species. The receptors in the PM-H fraction, however, were still capable of interacting with G-proteins, since addition of unlabeled PM-L membrane fraction as a G-protein source reconstituted a more rapidly sedimenting form showing sensitivity to GTP gamma S. These results suggest that receptors in unstimulated human neutrophils have a higher probability of interacting with G-proteins because they are in the light plasma membrane domain. The results also suggest that receptors that have been translocated to the heavy plasma membrane domain during the process of desensitization or response termination have a lower probability of interacting with G-protein. Since the latter receptors are still capable of forming G protein associations, then their lateral segregation would represent a mechanism of controlling of receptor G- protein interactions. This reorganization of the plasma membrane, therefore, may form the molecular basis for response termination or homologous desensitization in human neutrophils.  相似文献   

13.
By photoaffinity labeling of brush border membrane vesicles from rabbit small intestine with photoreactive derivatives of beta-lactam antibiotics and dipeptides, a binding protein for dipeptides and beta-lactam antibiotics with an apparent molecular weight of 127,000 was labeled. The labeled 127 kDa polypeptide could be solubilized with the non-ionic detergents Triton X-100, n-octyl glucoside or CHAPS. If the vesicles were solubilized prior to photoaffinity labeling, no clear incorporation of radioactivity into the 127 kDa polypeptide occurred indicating a loss of binding ability upon solubilization. By affinity chromatography of solubilized brush border membrane proteins on an agarose wheat germ lectin column, the binding protein for dipeptides and beta-lactam antibiotics of Mr 127,000 was retained on the column. With N-acetyl-D-glucosamine the photolabeled binding protein for beta-lactam antibiotics and dipeptides was eluted together with the brush border membrane-bound enzyme aminopeptidase N. Separation from aminopeptidase N and final purification was achieved by anion-exchange chromatography on DEAE-sephacel. Polyclonal antibodies against the purified binding protein were raised in guinea pigs. The photolabeled 127 kDa protein could be precipitated from solubilized brush border membranes with these antibodies. Incubation of brush border membrane vesicles with antiserum prior to photoaffinity labeling significantly reduced the extent of labeling of the 127 kDa protein. Treatment of brush border membrane vesicles with antiserum significantly inhibited the efflux of the alpha-aminocephalosporin cephalexin from the brush border membrane vesicles compared to vesicles treated with preimmune serum. These studies indicate that the binding protein for dipeptides and beta-lactam antibiotics of apparent molecular weight 127,000 in the brush border membrane of rabbit small intestinal enterocytes is directly involved in the uptake process of small peptides and orally active beta-lactam antibiotics across the enterocyte brush border membrane.  相似文献   

14.
Dihydropyridine-sensitive Ca2+ channels exist in many different types of cells and are believed to be regulated by various protein phosphorylation and dephosphorylation reactions. The present study concerns the phosphorylation of a putative component of dihydropyridine-sensitive Ca2+ channels by the calcium and phospholipid-dependent protein kinase, protein kinase C. A skeletal muscle peptide of 165 kDa, which is known to contain receptors for dihydropyridines, phenylalkylamines, and other Ca2+ channel effectors, was found to be an efficient substrate for protein kinase C when the peptide was phosphorylated in its membrane-bound state. Protein kinase C incorporated 1.5-2.0 mol of phosphate/mol of peptide within 2 min into the 165-kDa peptide in incubations carried out at 37 degrees C. In contrast to the membrane-bound peptide, the purified 165-kDa peptide in detergent solution was phosphorylated to a markedly less extent than its membrane-bound counterpart; less than 0.1 mol of phosphate/mol of peptide was incorporated. Preincubation of the membranes with several types of drugs known to be Ca2+ channel activators or inhibitors had no specific effects on the rate and/or extent of phosphorylation of the 165-kDa peptide by protein kinase C. The phosphorylation of the membrane-bound 165-kDa peptide by protein kinase C was compared to that catalyzed by cAMP-dependent protein kinase and was found to be not additive. Prior phosphorylation of the 165-kDa peptide by cAMP-dependent protein kinase prevented subsequent phosphorylation of the peptide by protein kinase C. Phosphoamino acid analysis indicated that protein kinase C phosphorylated the 165-kDa peptide at both serine and threonine residues. Phosphopeptide mapping experiments showed that protein kinase C phosphorylated one unique site in the 165-kDa peptide, and, in addition, other sites that were phosphorylated by either cAMP-dependent protein kinase or a multifunctional Ca2+/calmodulin-dependent protein kinase. The results suggest that the 165-kDa dihydropyridine/phenylalkylamine receptor could serve as a physiological substrate of protein kinase C in intact cells. It is therefore possible that the regulation of dihydropyridine-sensitive Ca2+ channels by activators of protein kinase C may occur at the level of this peptide.  相似文献   

15.
Partially purified fractions of dihydropyridine and phenylalkylamine receptors associated with voltage-dependent calcium channels in rabbit skeletal muscle were found to contain two glycopeptides of similar molecular weight. A peptide of approximately 165 kDa was photoaffinity labelled with an arylazido-phenylalkylamine Ca channel inhibitor and also was phosphorylated with cAMP-dependent protein kinase. Another peptide of 170 kDa could be distinguished from the 165 kDa peptide by peptide mapping and differences in electrophoretic mobility. The results suggest that the 165 kDa peptide contains the sites responsible for regulation of calcium channel activity by calcium channel inhibitors as well as by neurotransmitters that regulate its activity in a cAMP-dependent manner.  相似文献   

16.
An iodoazido[125I]prazosin analogue was employed to photoaffinity label alpha 1-adrenergic receptors in rat liver plasma membranes. Labeled proteins were separated by gradient polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and (-)-epinephrine displacement of [3H]prazosin binding was concurrently measured in the presence or absence of guanosine 5'-O-(gamma-thiotriphosphate) (GTP[gamma S]). Inclusion of EGTA and/or proteinase inhibitors during membrane preparation and incubation increased the effect of GTP[gamma S] on alpha 1-adrenergic agonist binding and this could be correlated with increased concentrations of a 78 kDa photoaffinity labeled protein. In contrast, omission of EGTA or addition of exogenous Ca2+ diminished or abolished the effect of GTP[gamma S] on binding and caused loss of the 78 kDa form and the appearance of lower molecular weight labeled proteins. Age-dependent differences in GTP[gamma S] effects on alpha 1-adrenergic agonist binding were abolished when membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. However, the 78 kDa photoaffinity labeled protein observed in adult rats (over 225 g body weight) was not apparent in membranes from younger rats (50-75 g), even when the membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. Instead, a 68 kDa species was the major labeled protein. These data suggest that GTP effects on alpha 1-adrenergic agonist binding in rat liver membranes require the presence of either a 68 or 78 kDa alpha 1-adrenergic binding protein. Failure to inhibit proteolysis in the membranes leads to the generation of lower-molecular-weight binding proteins and the loss of GTP effects on alpha 1-adrenergic agonist binding, although [3H]prazosin binding characteristics are not changed. It is suggested that either the proteolyzed forms of the alpha 1-adrenergic receptor are unable to couple to a putative guanine nucleotide-binding regulatory protein, or that such a protein is concurrently proteolyzed and is thus unable to couple to the receptor.  相似文献   

17.
18.
Reactive disulfide reagents (RDSs) with a biotin moiety have been synthesized and found to cause Ca2+ release from sarcoplasmic reticulum (SR) vesicles. The RDSs oxidize SH sites on SR proteins via a thiol-disulfide exchange, with the formation of mixed disulfide bonds between SR proteins and biotin. Biotinylated RDSs identified a 106-kDa protein which was purified by biotin-avidin chromatography. Disulfide reducing agents, like dithiothreitol, reverse the effect of RDSs and thus promoted active re-uptake of Ca2+ and dissociated biotin from the labeled protein indicating that biotin was covalently linked to the 106-kDa protein via a disulfide bond. Several lines of evidence indicate that this protein is not Ca2+, Mg2+-ATPase and is not a proteolytic fragment or a subunit of the 400-kDa Ca2+-ryanodine receptor complex (RRC). Monoclonal antibodies against the ATPase did not cross-react with the 106-kDa protein, and polyclonal antibodies against the 106-kDa did not cross-react with either the ATPase or the 400-kDa RRC. RDSs did not label the 400-kDa RRC with biotin. Linear sucrose gradients used to purify the RRC show that the 106-kDa protein migrated throughout 5-20% linear sucrose gradients, including the high sucrose density protein fractions containing 400-kDa RRC. Protease inhibitors diisopropylfluorophosphate used to prevent proteolysis of 400-kDa proteins did not alter the migration of 106-kDa in sucrose gradients nor the patterns of biotin labeling of the 106-kDa protein. Incorporation of highly purified 106-kDa protein (free of RRC) in planar bilayers revealed cationic channels with large Na+ (gNa+ = 375 +/- 15 pS) and Ca2+ (gCa2+ = 107.7 +/- 12 pS) conductances which were activated by micromolar [Ca2+]free or millimolar [ATP] and blocked by micromolar ruthenium red or millimolar [Mg2+]. Thus, the SR contains a sulfhydryl-activated 106-kDa Ca2+ channel with apparently similar characteristics to the 400-kDa "feet" proteins.  相似文献   

19.
This paper describes a large-scale purification procedure of the amiloride binding component of the epithelium Na+ channel. [3H]Phenamil was used as a labeled ligand to follow the purification. The first two steps are identical with those previously described [Barbry, P., Chassande, O., Vigne, P., Frelin, C., Ellory, C., Cragoe, E. J., Jr., & Lazdunski, M. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4836-4840]. A third step was a hydroxyapatite column. The purified material consisted of a homodimer of two 88-kDa proteins that migrated anomalously in SDS-PAGE to give an apparent Mr of 105,000. Deglycosylation by treatment with neuraminidase and endoglycosidase F or with neuraminidase and glycopeptidase F indicated that less than 5% of the mass of the native receptor was carbohydrate. Sedimentation analysis of the purified Na+ channel in H2O and D2O sucrose gradients and gel filtration experiments led to an estimated molecular weight of the [3H]phenamil receptor protein-detergent-phospholipid complex of 288,000 and of the native [3H]phenamil receptor protein of 158,000. [3H]Br-benzamil is another labeled derivative of amiloride that recognized binding sites that had the same pharmacological properties as [3H]phenamil binding sites and that copurified with them. Upon irradiation of kidney membranes, [3H]Br-benzamil incorporated specifically into a 185-kDa polypeptide chain under nonreducing electrophoretic conditions and a 105-kDa protein under reducing conditions. The same labeling pattern was observed at the different steps of the purification. Reconstitution of the purified phenamil receptor into large unilamellar vesicles was carried out. A low but significant phenamil- and amiloride-sensitive electrogenic Na+ transport was observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号