首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different
Authors:F C Chang  M M Hosey
Institution:Department of Biological Chemistry and Structure, University of Health Sciences, Chicago Medical School, Illinois 60064.
Abstract:We have purified putative L-type Ca2+ channels from chick heart by virtue of their associated high affinity receptors for the Ca2+ channel effectors, dihydropyridines (DHPs), and phenylalkylamines (PAAs). A peptide of 185,000-190,000 daltons was found to comigrate with the peak of DHP binding activity during purification through two successive cycles of lectin affinity chromatography and sucrose density gradient centrifugation. A previously described peptide of 140,000 daltons, whose Mr was increased to approximately 180,000 under nonreducing conditions, also copurified with the 185-kDa peptide and dihydropyridine binding activity. When cardiac membranes were photolabeled with either the dihydropyridine 3H]azidopine or the PAA 3H]azidopamil prior to purification, a single, specifically labeled component of 185,000-190,000 daltons was present in the purified fractions. The properties of this 185-kDa cardiac DHP/PAA receptor were compared to the smaller 165-kDa DHP/PAA receptor previously purified from skeletal muscle. Antibodies raised against the 165-kDa skeletal muscle DHP/PAA receptor reacted with both rabbit and chick skeletal muscle receptors, but only poorly recognized, if at all, the cardiac 185-190 kDa component. The 185-kDa peptide present in the purified fractions obtained from cardiac muscle did not undergo substantial phosphorylation by cAMP-dependent protein kinase, while the purified 165-kDa peptide from rabbit and chick skeletal muscle was a good substrate for this kinase. The results show that the DHP and PAA receptors in cardiac muscle are contained in a 185-190-kDa peptide that is significantly larger than, and structurally and immunologically different from, it skeletal muscle counterpart.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号