首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Analysis of flowering pathway integrators in Arabidopsis   总被引:9,自引:0,他引:9  
Flowering is regulated by an integrated network of several genetic pathways in Arabidopsis. The key genes integrating multiple flowering pathways are FT, SOC1 and LFY. To elucidate the interactions among these integrators, genetic analyses were performed. FT and SOC1 share the common upstream regulators CO, a key component in the long day pathway, and FLC, a flowering repressor integrating autonomous and vernalization pathways. However, the soc1 mutation further delayed the flowering time of long day pathway mutants including ft, demonstrating that SOC1 acts partially independently of FT. Although soc1 did not show an obvious defect in flower meristem determination on its own, it dramatically increased the number of coflorescences in a lfy mutant, which is indicative of a defect in floral initiation. Therefore, double mutant analysis shows that the three integrators have both overlapping and independent functions in the determination of flowering time and floral initiation. The expression analysis showed that FT regulates SOC1 expression, and SOC1 regulates LFY expression, but not vice versa, which is consistent with the fact that FT and LFY have the least overlapping functions among the three integrators. The triple mutation ft soc1 lfy did not block flowering completely under long days, indicating the presence of other integrators. Finally, vernalization accelerated flowering of flc ft soc1 and ft soc1 lfy triple mutants, which shows that the vernalization pathway also has targets other than FLC, FT, SOC1 and LFY. Our genetic analysis reveals the intricate nature of genetic networks for flowering.  相似文献   

3.
Regulation of flowering time by Arabidopsis MSI1   总被引:1,自引:0,他引:1  
The transition to flowering is tightly controlled by endogenous programs and environmental signals. We found that MSI1 is a novel flowering-time gene in Arabidopsis. Both partially complemented msi1 mutants and MSI1 antisense plants were late flowering, whereas ectopic expression of MSI1 accelerated flowering. Physiological experiments revealed that MSI1 is similar to genes from the autonomous promotion of flowering pathway. Expression of most known flowering-time genes did not depend on MSI1, but the induction of SOC1 was delayed in partially complemented msi1 mutants. Delayed activation of SOC1 is often caused by increased expression of the floral repressor FLC. However, MSI1 function is independent of FLC. MSI1 is needed to establish epigenetic H3K4 di-methylation and H3K9 acetylation marks in SOC1 chromatin. The presence of these modifications correlates with the high levels of SOC1 expression that induce flowering in Arabidopsis. Together, the control of flowering time depends on epigenetic mechanisms for the correct expression of not only the floral repressor FLC, but also the floral activator SOC1.  相似文献   

4.
A main developmental switch in the life cycle of a flowering plant is the transition from vegetative to reproductive growth. In Arabidopsis thaliana, distinct genetic pathways regulate the timing of this transition. We report here that brassinosteroid (BR) signaling establishes an unexpected and previously unidentified genetic pathway in the floral-regulating network. We isolated two alleles of brassinosteroid-insensitive 1 (bri1) as enhancers of the late-flowering autonomous-pathway mutant luminidependens (ld). bri1 was found to predominantly function as a flowering-time enhancer. Further analyses of double mutants between bri1 and known flowering-time mutants revealed that bri1 also enhances the phenotype of the autonomous mutant fca and of the dominant FRI line. Moreover, all of these double mutants exhibited elevated expression of the potent floral repressor FLOWERING LOCUS C (FLC). This molecular response could be efficiently suppressed by vernalization, leading to accelerated flowering. Additionally, specific reduction of the expression of FLC via RNA interference accelerated flowering in bri1 ld double mutants. Importantly, combining the BR-deficient mutant cpd with ld also resulted in delayed flowering and led to elevated FLC expression. Finally, we found increased histone H3 acetylation at FLC chromatin in bri1 ld mutants, as compared with ld single mutants. In conclusion, we propose that BR signaling acts to repress FLC expression, particularly in genetic situations, with, for example, dominant FRI alleles or autonomous-pathway mutants, in which FLC is activated.  相似文献   

5.
6.
7.
8.
9.
We have characterized Arabidopsis esd1 mutations, which cause early flowering independently of photoperiod, moderate increase of hypocotyl length, shortened inflorescence internodes, and altered leaf and flower development. Phenotypic analyses of double mutants with mutations at different loci of the flowering inductive pathways suggest that esd1 abolishes the FLC-mediated late flowering phenotype of plants carrying active alleles of FRI and of mutants of the autonomous pathway. We found that ESD1 is required for the expression of the FLC repressor to levels that inhibit flowering. However, the effect of esd1 in a flc-3 null genetic background and the downregulation of other members of the FLC-like/MAF gene family in esd1 mutants suggest that flowering inhibition mediated by ESD1 occurs through both FLC-and FLC-like gene-dependent pathways. The ESD1 locus was identified through a map-based cloning approach. ESD1 encodes ARP6, a homolog of the actin-related protein family that shares moderate sequence homology with conventional actins. Using chromatin immunoprecipitation (ChIP) experiments, we have determined that ARP6 is required for both histone acetylation and methylation of the FLC chromatin in Arabidopsis.  相似文献   

10.
The Arabidopsis Flowering Locus C (FLC) protein is a repressor of flowering regulated by genes in the autonomous and vernalization pathways. Previous genetic and transgenic data have suggested that FLC acts by repressing expression of the floral integrator genes SOC1 and FT. We have taken an in vivo approach to determine whether the FLC protein interacts directly with potential DNA targets. Using chromatin immunoprecipitation, we have shown that FLC binds to a region of the first intron of FT that contains a putative CArG box, and have confirmed that FLC binds to a CArG box in the promoter of the SOC1 gene. MADS box proteins are thought to bind their DNA targets as dimers or higher-order multimers. We have shown that FLC is a component of a multimeric protein complex in vivo and that more than one FLC polypeptides can be present in the complex.  相似文献   

11.
12.
13.
The Arabidopsis FLOWERING LOCUS C (FLC) gene encodes a MADS box protein that acts as a dose-dependent repressor of flowering. Mutants and ecotypes with elevated expression of FLC are late flowering and vernalization responsive. In this study we describe an early flowering mutant in the C24 ecotype, flc expressor (flx), that has reduced expression of FLC. FLX encodes a protein of unknown function with putative leucine zipper domains. FLX is required for FRIGIDA (FRI)-mediated activation of FLC but not for activation of FLC in autonomous pathway mutants. FLX is also required for expression of the FLC paralogs MADS AFFECTING FLOWERING 1 (MAF1) and MAF2.  相似文献   

14.
15.
春化作用相关基因FLC的研究进展   总被引:4,自引:0,他引:4  
拟南芥春化作用相关基因FLOWERING LOCUS C(FLC)属于MADS盒基因,它编码的蛋白转录因子对开花具抑制作用。春化作用通过负调控FLC的转录及蛋白表达水平,促进拟南芥的某些晚花生态型和晚花突变体开花。主要介绍了FLC基因在春化途径中的关键作用,及其春化作用通过FLC基因与其它开花途径相联系等内容。  相似文献   

16.
黄国文  韩玉珍  傅永福 《遗传》2013,35(1):93-100
植物的开花受多条途径的控制, 其中包括光周期途径、春化途径、赤霉素途径、自主途径和温敏途径。SUA41(SUMO substrate in Arabidopsis 41)是本实验室筛选到的、SUMO(Small ubiquitin modifier)的潜在底物, 并且前人的研究发现它参与自主途径的开花调节, 但其对开花时间的调节机制没有详细报道。文章对SUA41基因的表达、sua41突变体对不同环境条件的反应以及SUA41对开花时间调节的可能机制进行初步分析。结果显示, 与野生型相比, sua41突变体在常温或低温、长日或者短日条件下均为早花, 并且在低温和常温下的开花时间没有太大差别。过表达SUA41能够恢复sua41突变体的早花表型。SUA41基因在拟南芥的幼苗、根、茎、叶和花以及各个植物发育阶段都有表达, 说明SUA41基因是一个组成型表达基因。SUA41基因的表达与GA处理无关, 长日低温条件能够诱导SUA41基因的表达, 且在温敏途径突变体fve和fca中SUA41基因的表达量减少。与野生型比较, sua41突变体中CO基因的mRNA表达量没有明显变化, FT和SOC1基因表达量增加且FT增加幅度更大, FLC的mRNA表达量减少。结果表明SUA41基因虽然在自主途径中起作用, 但主要在温敏途径中参与拟南芥开花时间调节。  相似文献   

17.
The role of cryptochrome 2 in flowering in Arabidopsis   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated the genetic interactions between cry2 and the various flowering pathways in relation to the regulation of flowering by photoperiod and vernalization. For this, we combined three alleles of CRY2, the wild-type CRY2-Landsberg erecta (Ler), a cry2 loss-of-function null allele, and the gain-of-function CRY2-Cape Verde Islands (Cvi), with mutants representing the various photoreceptors and flowering pathways. The analysis of CRY2 alleles combined with photoreceptor mutants showed that CRY2-Cvi could compensate the loss of phyA and cry1, also indicating that cry2 does not require functional phyA or cry1. The analysis of mutants of the photoperiod pathway showed epistasis of co and gi to the CRY2 alleles, indicating that cry2 needs the product of CO and GI genes to promote flowering. All double mutants of this pathway showed a photoperiod response very much reduced compared with Ler. In contrast, mutations in the autonomous pathway genes were additive to the CRY2 alleles, partially overcoming the effects of CRY2-Cvi and restoring day length responsiveness. The three CRY2 alleles were day length sensitive when combined with FRI-Sf2 and/or FLC-Sf2 genes, which could be reverted when the delay of flowering caused by FRI-Sf2 and FLC-Sf2 alleles was removed by vernalization. In addition, we looked at the expression of FLC and CRY2 genes and showed that CRY2 is negatively regulated by FLC. These results indicate an interaction between the photoperiod and the FLC-dependent pathways upstream to the common downstream targets of both pathways, SOC1 and FT.  相似文献   

18.
Deng W  Liu C  Pei Y  Deng X  Niu L  Cao X 《Plant physiology》2007,143(4):1660-1668
Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis (Arabidopsis thaliana), the histone acetyltransferase AtHAC1 is homologous to animal p300/CREB (cAMP-responsive element-binding protein)-binding proteins, which are the main histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. The functions of p300/CREB-binding proteins in animals are well characterized, whereas little is known about the roles of AtHAC1 in developmental control in Arabidopsis. Lesions in AtHAC1 caused pleiotropic developmental defects, including delayed flowering, a shortened primary root, and partially reduced fertility. Analysis of the molecular basis of late flowering in hac1 mutants showed that the hac1 plants respond normally to day length, gibberellic acid treatment, and vernalization. Furthermore, the expression level of the flowering repressor FLOWERING LOCUS C (FLC) is increased in hac1 mutants, indicating that the late-flowering phenotype of hac1 mutants is mediated by FLC. Since histone acetylation is usually associated with the activation of gene expression, histone modifications of FLC chromatin are not affected by mutations in HAC1 and expression levels of all known autonomous pathway genes are unchanged in hac1 plants, we propose that HAC1 affects flowering time by epigenetic modification of factors upstream of FLC.  相似文献   

19.
20.
Mechanisms that mediate the control of flowering time have been accessed through a molecular genetic approach in Arabidopsis. Flowering is regulated by different pathways and, in the past year, all of the known components of the so-called autonomous pathway have been identified. The autonomous pathway comprises a combination of factors involved in RNA processing and epigenetic regulation that downregulate the floral repressor, FLOWERING LOCUS C (FLC). However, components of the autonomous pathway are more widely conserved in plant species other than Arabidopsis than is FLC. Therefore, the broadest lessons we learn from dissecting the function of the autonomous pathway may be in revealing how precision in regulated gene expression is delivered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号