首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 microM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.  相似文献   

2.
Lycopene, the major carotenoid found in tomatoes, is a potent antioxidant associated with the prevention of degenerative diseases such as breast cancer. This effect could be due to the interaction between lycopene and retinoic acid receptors as well as the stimulation of gap junction communication and synthesis of connexin 43. The expression of the RARalpha, RARbeta, and Cx43 proteins was analyzed using immunohistochemistry in two breast cancer cell lines, MCF-7 and MDA-MB-231, and in a fibrocystic dystrophy cell line, MCF-10a, after a 48-hr exposure to 10 microM lycopene. A real-time quantitative PCR analysis was then performed to measure mRNA expression. RARalpha and Cx43 expression were increased at both mRNA and protein levels in two breast cell lines.  相似文献   

3.
《Phytomedicine》2015,22(9):820-828
BackgroundBreast cancer is the leading cause of cancer-related death among women worldwide. For treating breast cancer, numerous natural products have been considered as chemotherapeutic drugs.Hypothesis/purposeThe present study aims to investigate the apoptotic effect of Saxifragifolin A (Saxi A) isolated from Androsace umbellata in two different human breast cancer cells which are ER-positive MCF-7 cells and ER-negative MDA-MB-231 cells, and examine the molecular basis for its anticancer actions.Study designThe inhibitory effects of Saxi A on cell survival were examined in MCF-7 cells and MDA-MB-231 cells in vitro.MethodsMTT assays, Annexin V/PI staining analysis, ROS production assay, Hoechst33342 staining and Western blot analysis were performed.ResultsOur results showed that MDA-MB-231 cells were more sensitive to Saxi A-induced apoptosis than MCF-7 cells. Saxi A induced apoptosis in MDA-MB-231 cells through ROS-mediated and caspase-dependent pathways, whereas treatment with Saxi A induced apoptosis in MCF-7 cells in a caspase-independent manner. In spite of Saxi A-induced activation of MAPKs in both breast cancer cell lines, only p38 MAPK and JNK mediated Saxi A-induced apoptosis. In addition, cell survival of shERα-transfected MCF-7 cells was decreased, while MDA-MB-231 cells that overexpress ERα remained viable.ConclusionSaxi A inhibits cell survival in MCF-7 cells and MDA-MB-231 cells through different regulatory pathway, and ERα status appears to be important for regulating Saxi A-induced apoptosis in breast cancer cells. Thus, Saxi A may have a potential therapeutic use for treating breast cancer.  相似文献   

4.
Breast cancer is the most common female cancer. However, the known effective specific biomarkers for breast cancer are still scarce. Abnormal membrane proteins serve as ideal biomarkers for disease diagnoses, therapeutics and prognosis. Thus aptamers (single-stranded oligonucleotide molecules) with molecular recognition properties can be used as efficient tools to sort cells based on differences in cell surface architecture between normal and tumor cells. In this study, we aimed to screen specific aptamer against MCF-7 human breast cancer cells. Cell-SELEX process was performed to isolate aptamers from a combinatorial single-stranded nucleic acid library that selectively targeting surface proteins of MCF-7 cells in contrast with MCF-10A human mammary epithelial cells. The process was repeated until the pool was enriched for sequences that specifically recognizing MCF-7 cells in monitoring by flow cytometry. Subsequently, the enriched pool was cloned into bacteria, and positive clones were sequenced to obtain individual sequences. Representative sequences were chemically synthesized and evaluated their binding affinities to MCF-7 cells. As a result, an aptamer S1 was finally identified to have high binding affinity with equilibrium dissociation constant (Kd) value of 29.9 ± 6.0 nM. FAM-labeled aptamer S1 induced fluorescence shift in MCF-7 cells but not in MCF-10A human mammary epithelial cells, or MDA-MB-453 and MDA-MB-231 human breast cancer cells. Furthermore, result of cell imaging observed from laser confocal fluorescence microscope showed that MCF-7 cells exhibited stronger fluorescence signal resulted from Cy5-labeled aptamer S1 than MCF-10A cells. The above findings suggested that S1 may be a specificity and selectivity aptamer for MCF-7 cells and useful for the breast cancer detection and diagnosis.  相似文献   

5.
1H high-resolution magic angle spinning nuclear magnetic resonance (1H HR–MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 1H HR–MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR–MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.  相似文献   

6.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

7.
BackgroundCoumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed.MethodsAntiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot.ResultsThe inhibition concentration (IC50) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC50) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84 μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon styrene substituted biscoumarin treatment to MDA-MB-231 cells. Our results showed that styrene substituted biscoumarin downregulated BCL-2 gene expression and upregulated BAX gene expression to trigger apoptotic process.ConclusionStyrene substituted biscoumarin could induce apoptosis through intrinsic mitochondrial pathway in breast cancer cell lines, particularly in MDA-MB-231. Our data suggest that styrene substituted biscoumarin may act as a potential chemotherapeutic agent against breast cancer.  相似文献   

8.
Prolonged exposure to estrogens is a significant risk factor for the development of breast cancer. Estrogens exert carcinogenic effects by stimulating cell proliferation or through oxidative metabolism that forms DNA-damaging species. In the present study, we aimed to provide a better understanding of estrogen metabolism and actions in breast cancer, and to characterize model breast cancer cell lines. We determined the expression profiles of the genes for the estrogen and progesterone receptors, and for 18 estrogen-metabolizing enzymes in eight cell lines: MCF-7, MCF-10A, T47D, SKBR3, MDA-MB-231, MDA-MB-361, Hs-578T and Hs-578Bst cells. Similar gene expression profiles of these receptors and enzymes for the formation of estradiol via the aromatase and sulfatase pathways were observed in the MCF-7 and T47D metastatic cell lines. The MDA-MB-361 cells expressed ESR1, ESR2 and PGR as well, but differed in expression of the estrogen-metabolizing enzymes. In the MDA-MB-231 and SKBR3 cells, all of these estrogen-forming enzymes were expressed, although the lack of ESR1 and the low levels of ESR2 expression suggested that the estrogens can only act via non-ER mediated pathways. In the non-tumorigenic MCF-10A cell line, the key enzymes of the aromatase pathway were not expressed, and the sulfatase pathway also had a marginal role. The comparison between gene expression profiles of the non-tumorigenic Hs-578Bst cells and the cancerous Hs-578T cells revealed that they can both form estrogens via the sulfatase pathway, while the aromatase pathway is less important in the Hs-578Bst cells. The Hs-578T cells showed low levels of ESR1, ESR2 and PGR expression, while only ESR1 and ESR2 expression was detected in the Hs-578Bst cells. Our data show that the cell lines examined provide the full range of model systems and should further be compared with the expression profiles of breast cancer specimens.  相似文献   

9.
The emergence of multidrug resistance (MDR) is a significant challenge in breast carcinoma chemotherapy. Kokusaginine isolated from Dictamnus dasycarpus Turcz. has been reported to show cytotoxicity in several human cancer cell lines including breast cancer cells MCF-7. In this study, kokusaginine showed the potent inhibitory effect on MCF-7 multidrug resistant subline MCF-7/ADR and MDA-MB-231 multidrug resistant subline MDA-MB-231/ADR. Kokusaginine markedly induced apoptosis in a concentration-dependent manner in MCF-7/ADR cells. Furthermore, kokusaginine reduced P-gp mRNA and protein levels, and suppressed P-gp function especially in MCF-7/ADR cells. In addition, kokusaginine showed to inhibit tubulin assembly and the binding of colchicine to tubulin by binding directly to tubulin and affects tubulin formation in vitro. Taken together, these results support the potential therapeutic value of kokusaginine as an anti-MDR agent in chemotherapy for breast carcinoma.  相似文献   

10.
Cancer cells have broken circadian clocks when compared to their normal tissue counterparts. Moreover, it has been shown in breast cancer that disruption of common circadian oscillations is associated with a more negative prognosis. Numerous studies, focused on canonical circadian genes in breast cancer cell lines, have suggested that there are no mRNA circadian-like oscillations. Nevertheless, cancer cell lines have not been extensively characterized and it is unknown to what extent the circadian oscillations are disrupted. We have chosen representative non-cancerous and cancerous breast cell lines (MCF-10A, MCF-7, ZR-75-30, MDA-MB-231 and HCC-1954) in order to determine the degree to which the circadian clock is damaged. We used serum shock to synchronize the circadian clocks in culture. Our aim was to initially observe the time course of gene expression using cDNA microarrays in the non-cancerous MCF-10A and the cancerous MCF-7 cells for screening and then to characterize specific genes in other cell lines. We used a cosine function to select highly correlated profiles. Some of the identified genes were validated by quantitative polymerase chain reaction (qPCR) and further evaluated in the other breast cancer cell lines. Interestingly, we observed that breast cancer and non-cancerous cultured cells are able to generate specific circadian expression profiles in response to the serum shock. The rhythmic genes, suggested via microarray and measured in each particular subtype, suggest that each breast cancer cell type responds differently to the circadian synchronization. Future results could identify circadian-like genes that are altered in breast cancer and non-cancerous cells, which can be used to propose novel treatments. Breast cell lines are potential models for in vitro studies of circadian clocks and clock-controlled pathways.  相似文献   

11.
The transport of l-leucine by two human breast cancer cell lines has been examined. l-Leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+-independent pathway. l-Leucine uptake by both cell lines was inhibited by l-alanine, d-leucine and to a lesser extent by l-lysine but not by l-proline. Estrogen (17β-estradiol) stimulated l-leucine uptake by MCF-7 but not by MDA-MB-231 cells. l-Leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on l-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 °C. There was, however, a significant efflux of l-leucine under zero-trans conditions which was also temperature-sensitive. l-Glutamine, l-leucine, d-leucine, l-alanine, AIB and l-lysine all trans-stimulated l-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, d-alanine and l-proline had little or no effect. The anti-cancer agent melphalan inhibited l-leucine uptake by MDA-MB-231 cells but had no effect on l-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for l-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

12.
13.
A series of novel amyl ester tethered dihydroartemisinin-isatin hybrids 4a–d and 5a–h were designed, synthesized, and evaluated as anti-breast cancer agents. The synthesized hybrids were preliminarily screened against estrogen receptor-positive (MCF-7 and MCF-7/ADR) and triple-negative (MDA-MB-231 and) breast cancer cell lines. Three hybrids 4a , d and 5e not only were more potent than artemisinin and adriamycin against drug-resistant MCF-7/ADR and MDA-MB-231/ADR breast cancer cell lines, but also displayed non-cytotoxicity towards normal MCF-10 A breast cells, and the SI values were >4.15, indicating their excellent selectivity and safety profiles. Thus, hybrids 4a , d and 5e could act as potential anti-breast cancer candidates and were worthy of further preclinical evaluations. Moreover, the structure–activity relationships which may facilitate further rational design of more effective candidates were also enriched.  相似文献   

14.
Apoptotic pathways in breast cancer cells are frequently altered, reducing the efficiency of radiotherapy. Conjugated linoleic acid (CLA), known to trigger apoptosis, was tested as radiosensitizer in breast cancer cells MCF-7 and MDA-MB-231. The CLA-mix, made up of the isomers CLA-9cis 11trans and CLA-10trans 12cis, was compared to three purified isomers, i.e., the CLA-9cis 11cis, CLA-9cis 11trans, and CLA-10trans 12cis. Using the apoptotic marker YO-PRO-1, the CLA-9cis 11cis at 50 micro mol/L turned out to be the best apoptotic inducer leading to a 10-fold increase in MCF-7 cells and a 2,5-fold increase in MDA-MB-231 cells, comparatively to the CLA-mix. Contrary to previous studies on colorectal and prostate cancer cells, CLA-10trans 12cis does not lead to an apoptotic response on breast cancer cell lines MCF-7 and MDA-MB-231. Our results also suggest that the main components of the CLA-mix (CLA-9cis 11trans and CLA-10trans 12cis) are not involved in the induction of apoptosis in the breast cancer cells studied. A dose of 5 Gy did not induce apoptosis in MCF-7 and MDA-MB-231 cells. The addition of CLA-9cis 11cis or CLA-mix has allowed us to observe a radiation-induced apoptosis, with the CLA-9cis 11cis being about 8-fold better than the CLA-mix. CLA-9cis 11cis turned out to be the best radiosensitizer, although the isomers CLA-9cis 11trans and CLA-10trans 12cis have also reduced the cell survival following irradiation, but using a mechanism not related to apoptosis. In conclusion, the radiosensitizing property of CLA-9cis 11cis supports its potential as an agent to improve radiotherapy against breast carcinoma.  相似文献   

15.
转化生长因子β(transforming growth factorβ,TGFβ)与其受体(transforming growth factorβreceptor,TGFβR)结合激活下游信号通路,在肿瘤的发生发展和转移中具有重要意义,且已有迹象表明该通路可能介导肿瘤的化疗耐受.本研究构建了干扰转化生长因子βⅠ型受体(transforming growth factor receptor typeⅠ,TGFβRⅠ)的重组质粒pRNAT-U6.1/TGFβRⅠ-sh1,发现其可在mRNA和蛋白质水平均显著下调TGFβRⅠ的表达,P0.01.后将该干扰质粒转染乳腺癌细胞MCF-7/5Fu、MCF-7、MDA-MB-231、MDA-MB-453,建立了稳定的乳腺癌TGFβRⅠ干扰模型;MTS法检测上述4种细胞模型对5-氟尿嘧啶(5-fluorouracil,5-FU)和紫杉醇(taxol,TAX)的敏感性.结果显示,MCF-7、MCF-7/5Fu和MDA-MB-453细胞在干扰TGFβRⅠ之后对5-FU和TAX敏感性并未发生改变;但是间质表型的MDA-MB-231细胞在干扰TGFβRⅠ之后对5-FU和TAX的敏感性显著增加.由此可见,干扰TGFβRⅠ的表达阻断TGFβ信号通路,进而显著增加间质型乳腺癌细胞对化疗药物的敏感性,这为临床乳腺癌治疗提供了一定的理论依据.  相似文献   

16.
Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the Doc resistance were screened by miRNA microarray. We selected 5 upregulated miRNAs (has-miR-3646, has-miR-3658, has-miR-4438, has-miR-1246, and has-miR-574-3p) from the results of microarray for RT-qPCR validation. The results showed that expression level of miR-3646 in MDA-MB-231/Doc cells was significantly higher than in MDA-MB-231/S cells. Compared to MCF-7/S cells, miR-3646 expression was up-regulated in MCF-7/Doc cells. Further studies revealed that transfection of miR-3646 mimics into MDA-MB-231/S or MCF-7/S cells remarkably increased their drug resistance, in contrast, transfection of miR-3646 inhibitors into MDA-MB-231/Doc or MCF-7/Doc cells resulted in significant reduction of the drug resistance. By the pathway enrichment analyses for miR-3646, we found that GSK-3β/β-catenin signaling pathway was a significant pathway, in which GSK-3β was an essential member. RT-qPCR and Western blot results demonstrated that miR-3646 could regulate GSK-3β mRNA and protein expressions. Furthermore, a marked increase of both nuclear and cytoplasmic β-catenin expressions (with phosphorylated-β-catenin decrease) was observed in MDA-MB-231/Doc cells compared with MDA-MB-231/S cells, and their expression were positively related to miR-3646 and negatively correlated with GSK-3β. Taken together, our results suggest that miR-3646-mediated Doc resistance of breast cancer cells maybe, at least in part, through suppressing expression of GSK-3β and resultantly activating GSK-3β/β-catenin signaling pathway.  相似文献   

17.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

18.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

19.
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.  相似文献   

20.
Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号